

Fast ConvNets with fbfft
A GPU Performance Evaluation

Facebook AI Research

Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala, Serkan Piantino, Yann LeCun
Facebook AI Research
7th May, 2015

1 Introduction

2 Contributions

3 Upcoming Work

4 Numbers

Agenda

Introduction

Convolution

Convolutional Neural Networks

Figure from Sermanet et. al., ICPR-12

•  Convolutional layers computationally expensive

•  Main reason for justifying GPUs

Fourier Transform

Public Domain animation from Wikipedia

Convolution using Fourier Transform

•  Convolution Theorem

▪  In Fourier basis, pointwise multiplications

•  FFT with Cooley-Tuckey: O(n^2) -> O (n . log n)

Contributions

Contributions
•  Convolutions as composition of FFT, transpose and GEMM

▪  Implementation based on NVIDIA libraries + Auto-Tuner

•  High Performance FBFFT and FBMM for our domain

•  Bandwidth-bound (at least on GPUs)

▪  Unlike convolutions in spatial domain

▪  We increase the memory BW requirements

▪  Tiling moves communication from main memory to caches

•  Moved the ceiling of achievable performance

▪  Now focus on optimization

Convolutions as composition of operations

Fast convolutions using cuFFT + cuBLAS

•  Choosing between

▪  Batched vs iterated cuBLAS calls

▪  Best FFT interpolation sizes (cuFFT only) vs FBFFT

▪  Efficiency vs additional multiplications

▪  FBMM vs cuBLAS transpose + cublas GEMM

▪  Efficiency vs additional memory consumption

•  Auto-tuning

▪  Construct small search space, traverse exhaustively

▪  Enough for our purposes

The need for specialized FFT implementation
•  cuFFT not suited for ConvNet regimes

▪  Tuned for HPC and DSP applications, large FFTs

▪  Convolutional nets need many small FFTs

•  cuFFT needs explicit zero-padding

•  cuFFT / cuBLAS are closed-source

▪  Cannot try new ideas or even implicit zero-padding

•  Extra time / memory wasted on data layout transpose

FBFFT
•  Implementation views a GPU as a wide vector

▪  Exchanges data using shuffles

▪  Avoids shared memory

▪  Heavy use of registers

•  Compute twiddle factors using trigonometric symmetries

•  Actually limited by numbers of shuffle operations

▪  Not by memory BW

▪  Not by compute

Memory Consumption
•  Tradeoff: parallelism / efficiency / reuse and memory bloat

▪  We can make them arbitrary small

▪  Given a memory budget, get the best performance, across layers

•  Single layer problem: all buffers must fit in memory

▪  Reuse buffers across all layers, no reuse of FT values

▪  ~9x the largest layer with cuBLAS / cuFFT, 3x with FBFFT / FBMM

▪  Large inputs problematic (common Fourier interpolation basis) -> tiling

•  Multi-layer problem

▪  Exploit reuse between FT, dependences are long (2 long, 1 short)

Key insights
•  For kernels <= 15 x 15, you only need 16x16 or 32x32 FFTs

•  Whatever the kernel size, cost is the same

▪  True until you need a larger Fourier interpolation basis

▪  Then tiling kicks in

•  Algorithm >> Optimization

•  Main memory BW limited

▪  Work towards cache BW limited

▪  Significant room for improvement (float16)

Numbers
(as of December 2014)

Speedup (CuFFT + CuBLAS) over CuDNN (R1)

Speedup (CuFFT + CuBLAS)

Speedup (CuFFT + CuBLAS)

Speedup (FBFFT vs CuFFT)

Comparison on Imagenet Networks

Comparison on Imagenet Networks

Comparison on Imagenet Networks

Hot From The Press
•  Updated numbers:

▪  Tiled FFT

▪  Implicit padding

▪  Buffer reuse and memory management strategies

▪  Asynchrony for better utilization

▪  Faster FFT (precomputed coefficients)

•  Discuss at our poster session on Saturday

▪  Saturday May 9th, 10:30am – 1:30pm

Questions?

