

Fast ConvNets with fbfft A GPU Performance Evaluation

Facebook AI Research

Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala, Serkan Piantino, Yann LeCun Facebook Al Research 7th May, 2015

1 Introduction

2 Contributions

3 Upcoming Work

4 Numbers

Introduction

Convolution

Convolutional Neural Networks

- Convolutional layers computationally expensive
- Main reason for justifying GPUs

Figure from Sermanet et. al., ICPR-12

Fourier Transform

Public Domain animation from Wikipedia

Convolution using Fourier Transform

$$w_{(s,j)} = \sum_{i \in f} x_{(s,i)} \star w_{(j,i)} = \sum_{i \in f} \mathcal{F}^{-1} \left(\mathcal{F}(x_{(s,i)}) \circ \mathcal{F}(w_{(j,i)})^* \right)$$

Convolution Theorem

In Fourier basis, pointwise multiplications

FFT with Cooley-Tuckey: O(n²) -> O (n . log n)

Contributions

Contributions

- Convolutions as composition of FFT, transpose and GEMM
 - Implementation based on NVIDIA libraries + Auto-Tuner
- High Performance FBFFT and FBMM for our domain
- Bandwidth-bound (at least on GPUs)
 - Unlike convolutions in spatial domain
 - We increase the memory BW requirements
 - Tiling moves communication from main memory to caches
- Moved the ceiling of achievable performance
 - Now focus on optimization

Convolutions as composition of operations

INPUT $f \times h \times w$ $Wei_{f' \times f \times k_h \times k_w}$ $InF_{S \times f \times (h+p_h) \times (|\frac{w+p_w}{2}|+1)}$ $WeiF_{f'\times f\times (h+p_h)\times (\lfloor \frac{w+p_w}{2}\rfloor+1)}$ $InFT_{(h+p_h)\times(\lfloor\frac{w+p_w}{2}\rfloor+1)\times S\times f}$ $WeiFT^*_{(h+p_h)\times(\lfloor\frac{w+p_w}{2}\rfloor+1)\times f'\times f}$ $OutFT_{(h+p_h)\times(\lfloor\frac{w+p_w}{2}\rfloor+1)\times S\times f'}$ $OutF_{S \times f' \times (h+p_h) \times (|\frac{w+p_w}{2}|+1)}$

	OUIPUI
$\xrightarrow{FFT2D}$ $\xrightarrow{FFT2D}$	$InF_{S \times f \times (h+p_h) \times (\lfloor \frac{w+p_w}{2} \rfloor + 1)}$ WeiF (in for (1 - 1)) : (w+p_w + 1)
$\xrightarrow{Trans2D}$ $\xrightarrow{Trans2D}$	$InFT_{(h+p_h)\times(\lfloor\frac{w+p_w}{2}\rfloor+1)\times S\times f}$ $WeiFT_{(h+p_h)\times(\lfloor\frac{w+p_w}{2}\rfloor+1)\times f'\times f}$
Cgemm →	$OutFT_{(h+p_h)\times(\lfloor\frac{w+p_w}{2}\rfloor+1)\times S\times f'}$
$\xrightarrow{Trans2D}$ $\xrightarrow{IFFT2D}$	$OutF_{S \times f' \times (h+p_h) \times (\lfloor \frac{w+p_w}{2} \rfloor + 1)}$ $Out_{S \times f' \times (h-k_h+1) \times (w-k_w+1)}$

Fast convolutions using cuFFT + cuBLAS

Choosing between

- Batched vs iterated cuBLAS calls
- Best FFT interpolation sizes (cuFFT only) vs FBFFT
 - Efficiency vs additional multiplications
- FBMM vs cuBLAS transpose + cublas GEMM
 - Efficiency vs additional memory consumption
- Auto-tuning
 - Construct small search space, traverse exhaustively
 - Enough for our purposes

The need for specialized FFT implementation

- cuFFT not suited for ConvNet regimes
 - Tuned for HPC and DSP applications, large FFTs
 - Convolutional nets need many small FFTs
- cuFFT needs explicit zero-padding
- cuFFT / cuBLAS are closed-source
 - Cannot try new ideas or even implicit zero-padding
- Extra time / memory wasted on data layout transpose

FBFFT

- Implementation views a GPU as a wide vector
 - Exchanges data using shuffles
 - Avoids shared memory
 - Heavy use of registers
- Compute twiddle factors using trigonometric symmetries
- Actually limited by numbers of shuffle operations
 - Not by memory BW
 - Not by compute

Memory Consumption

- Tradeoff: parallelism / efficiency / reuse and memory bloat
 - We can make them arbitrary small
 - Given a memory budget, get the best performance, across layers
- Single layer problem: all buffers must fit in memory
 - Reuse buffers across all layers, no reuse of FT values
 - ~9x the largest layer with cuBLAS / cuFFT, 3x with FBFFT / FBMM
 - Large inputs problematic (common Fourier interpolation basis) -> tiling
- Multi-layer problem
 - Exploit reuse between FT, dependences are long (2 long, 1 short)

Key insights

- For kernels <= 15 x 15, you only need 16x16 or 32x32 FFTs
- Whatever the kernel size, cost is the same
 - True until you need a larger Fourier interpolation basis
 - Then tiling kicks in
- Algorithm >> Optimization
- Main memory BW limited
 - Work towards cache BW limited
 - Significant room for improvement (float16)

Numbers (as of December 2014)

Speedup (CuFFT + CuBLAS) over CuDNN (R1)

Figure 1: 3×3 kernel (K40m)

Figure 2: 5×5 kernel (K40m)

Speedup (CuFFT + CuBLAS)

Figure 4: 9×9 kernel (K40m)

Speedup (CuFFT + CuBLAS)

Figure 5: 11×11 kernel (K40m)

Figure 6: 13×13 kernel (K40m)

Speedup (FBFFT vs CuFFT)

Figure 8: fbfft-2D FFT and IFFT (K40m, cuFFT 6.5 @ 1x)

Comparison on Imagenet Networks

AlexNet (One Weird Trick paper) - Input 128x3x224x224

Library	Class	Time (ms)	forward (ms)	backward (ms)
NervanaSys-16	ConvLayer	97	30	67
NervanaSys-32	ConvLayer	109	31	78
fbfft	SpatialConvolutionCuFFT	136	45	91
cudaconvnet2*	ConvLayer	177	42	135
CuDNN (R2) *	cudnn.SpatialConvolution	231	70	161
Caffe (native)	ConvolutionLayer	324	121	203
Torch-7 (native)	SpatialConvolutionMM	342	132	210

Comparison on Imagenet Networks

Overfeat [fast] - Input 128x3x231x231

Library	Class	Time (ms)	forward (ms)	backward (ms)
NervanaSys-16	ConvLayer	364	119	245
NervanaSys-32	ConvLayer	410	126	284
fbfft	SpatialConvolutionCuFFT	407	139	268
cudaconvnet2*	ConvLayer	723	176	547
CuDNN (R2) *	cudnn.SpatialConvolution	810	234	576
Caffe	ConvolutionLayer	823	355	468
Torch-7 (native)	SpatialConvolutionMM	878	379	499

Comparison on Imagenet Networks

OxfordNet [Model-A] - Input 64x3x224x224

Library	Class	Time (ms)	forward (ms)	backward (ms)
NervanaSys-16	ConvLayer	530	166	364
NervanaSys-32	ConvLayer	629	173	456
fbfft	SpatialConvolutionCuFFT	1092	355	737
cudaconvnet2*	ConvLayer	1229	408	821
CuDNN (R2) *	cudnn.SpatialConvolution	1099	342	757
Caffe	ConvolutionLayer	1068	323	745
Torch-7 (native)	SpatialConvolutionMM	1105	350	755

Hot From The Press

- Updated numbers:
 - Tiled FFT
 - Implicit padding
 - Buffer reuse and memory management strategies
 - Asynchrony for better utilization
 - Faster FFT (precomputed coefficients)
- Discuss at our poster session on Saturday
 - Saturday May 9th, 10:30am 1:30pm

Questions?