Word Representations via Gaussian Embedding

Luke Vilnis
Andrew McCallum

University of Massachusetts Amherst

Vector word embeddings

- teacherchefastronautcomposerperson
- Low-Level NLP [Turian et al. 2010, Collobert et al. 2011]
- Named Entity Extraction [Passos et al. 2014]
- Machine Translation [Kalchbrenner & Blunsom 2013, Cho et al. 2014]
- Question Answering [Weston et al. 2015]

•road
•street
•lane
•boulevard

Vector word embeddings

What's missing?

- Breadth
- Asymmetry

person

- Breadth
- Asymmetry

Advantages

- Breadth
- Asymmetry

for each word i

 v_i

Advantages

- Breadth
- Asymmetry

for each word i

$$\mathcal{N}(x; \mu_i, \Sigma_i)$$

Advantages

- **Breadth:** covariance matrix
- Asymmetry

for each word i

$$\mathcal{N}(x; \mu_i, \Sigma_i)$$

Advantages

- **Breadth:** covariance matrix
- Asymmetry

for each word i

$$\mathcal{N}(x; \mu_i, \Sigma_i) \propto -\log \det(\Sigma_i) - (\mu_i - x)^{\top} \Sigma_i^{-1} (\mu_i - x)$$

Advantages

- **Breadth:** covariance matrix
- Asymmetry

for each word i

$$\mathcal{N}(x; \mu_i, \Sigma_i)$$

$$\mathcal{N}(x; \mu_i, \Sigma_i) \propto -\log \det(\Sigma_i) - (\mu_i - x)^{\top} \Sigma_i^{-1} (\mu_i - x)$$

Mahalanobis distance

measured by Σ_i

logarithmic penalty on volume due to normalization

Advantages

- **Breadth:** covariance matrix
- **Asymmetry:** KL-divergence

for each word i

$$\mathcal{N}(x; \mu_i, \Sigma_i)$$

$$\propto$$

$$\mathcal{N}(x; \mu_i, \Sigma_i) \propto -\log \det(\Sigma_i) - (\mu_i - x)^{\top} \Sigma_i^{-1} (\mu_i - x)$$

logarithmic penalty on volume due to normalization

Mahalanobis distance

measured by Σ_i

- **Breadth:** covariance matrix
- Asymmetry: KL-divergence

$$KL(\mathcal{N}_i||\mathcal{N}_j) =$$

$$\int_{x} \mathcal{N}(x; \mu_{i}, \Sigma_{i}) \log \frac{\mathcal{N}(x; \mu_{i}, \Sigma_{i})}{\mathcal{N}(x; \mu_{j}, \Sigma_{j})} dx$$

- **Breadth:** covariance matrix
- Asymmetry: KL-divergence

$$KL(\mathcal{N}_i||\mathcal{N}_j) =$$

$$\int_{x} \mathcal{N}(x; \mu_{i}, \Sigma_{i}) \log \frac{\mathcal{N}(x; \mu_{i}, \Sigma_{i})}{\mathcal{N}(x; \mu_{j}, \Sigma_{j})} dx$$

- **Breadth:** covariance matrix
- Asymmetry: KL-divergence

$$KL(\mathcal{N}_i || \mathcal{N}_j) \propto$$

$$-\operatorname{tr}(\Sigma_i^{-1}\Sigma_j) - (\mu_i - \mu_j)^{\top}\Sigma_i^{-1}(\mu_i - \mu_j) - \log \frac{\det(\Sigma_i)}{\det(\Sigma_j)}$$

Advantages

- **Breadth:** covariance matrix
- Asymmetry: KL-divergence

$$KL(\mathcal{N}_i || \mathcal{N}_j) \propto$$

$$-\operatorname{tr}(\Sigma_i^{-1}\Sigma_j) - (\mu_i - \mu_j)^{\top}\Sigma_i^{-1}(\mu_i - \mu_j) - \log \frac{\det(\Sigma_i)}{\det(\Sigma_j)}$$

directions of variance should be aligned, i should be "large" and j "small"

distance between means is "small" as measured by i

logarithmic penalty on volume due to normalization

e.g. [Mikolov et al. 2013]

e.g. [Mikolov et al. 2013]

$$E(\text{word}_i, \text{word}_j) = \langle v_i, v_j \rangle$$

e.g. [Mikolov et al. 2013]

... German musician and composer of the Baroque ...

(composer, musician)

$$E(\text{word}_i, \text{word}_j) = \langle v_i, v_j \rangle$$

e.g. [Mikolov et al. 2013]

... German musician and composer of the Baroque ...

(composer, musician)

(composer, dictionary)
word

$$E(\text{word}_i, \text{word}_j) = \langle v_i, v_j \rangle$$

e.g. [Mikolov et al. 2013]

$$E(\text{word}_i, \text{word}_j) = \langle v_i, v_j \rangle$$

e.g. [Mikolov et al. 2013]

$$E(\text{word}_i, \text{word}_j) = \langle v_i, v_j \rangle$$

e.g. [Mikolov et al. 2013]

$$E(\text{word}_i, \text{word}_j) = \sum_k v_i^{(k)} v_j^{(k)}$$

e.g. [Mikolov et al. 2013]

$$E(\text{word}_i, \text{word}_j) = \int_k v_i(k)v_j(k)dk$$

e.g. [Mikolov et al. 2013]

... German musician and composer of the Baroque ...

$$E(\text{word}_i, \text{word}_j) = \int_k v_i(k)v_j(k)dk$$

... German musician and composer of the Baroque ...

$$E(\text{word}_i, \text{word}_j) = \int_k v_i(k)v_j(k)dk$$

... German musician and composer of the Baroque ...

$$E(\mathrm{word}_i, \mathrm{word}_j) = \int_x \mathcal{N}(x; \mu_i, \Sigma_i) \mathcal{N}(x; \mu_j, \Sigma_j) dx$$
 [PPK, Jebara et al. 2003]

... German musician and composer of the Baroque ...

$$E(\mathrm{word}_i, \mathrm{word}_j) = \int_x \mathcal{N}(x; \mu_i, \Sigma_i) \mathcal{N}(x; \mu_j, \Sigma_j) dx$$
[PPK, Jebara et al. 2003] $= \mathcal{N}(0; \mu_i - \mu_j, \Sigma_i + \Sigma_j)$

... German musician and composer of the Baroque ...

$$E(\mathrm{word}_i, \mathrm{word}_j) = \int_x \mathcal{N}(x; \mu_i, \Sigma_i) \mathcal{N}(x; \mu_j, \Sigma_j) dx = \mathcal{N}(0; \mu_i - \mu_j, \Sigma_i + \Sigma_j)$$

$$\propto -\log \det(\Sigma_i + \Sigma_j) - (\mu_i - \mu_j)^{\top} (\Sigma_i + \Sigma_j)^{-1} (\mu_i - \mu_j)$$

... German musician and composer of the Baroque ...

E(composer, musician) > E(composer, banana)

$$E(\mathrm{word}_i, \mathrm{word}_j) = \int_x \mathcal{N}(x; \mu_i, \Sigma_i) \mathcal{N}(x; \mu_j, \Sigma_j) dx$$
 [PPK, Jebara et al. 2003] $= \mathcal{N}(0; \mu_i - \mu_j, \Sigma_i + \Sigma_j)$

$$\propto -\log \det(\Sigma_i + \Sigma_j) - (\mu_i - \mu_j)^{\top} (\Sigma_i + \Sigma_j)^{-1} (\mu_i - \mu_j)$$

log-volume of ellipse

Mahalanobis distance between means

... German musician and composer of the Baroque ...

$$E(\mathrm{word}_i, \mathrm{word}_j) = \int_x \mathcal{N}(x; \mu_i, \Sigma_i) \mathcal{N}(x; \mu_j, \Sigma_j) dx$$
[PPK, Jebara et al. 2003] $= \mathcal{N}(0; \mu_i - \mu_j, \Sigma_i + \Sigma_j)$

... German musician and composer of the Baroque ...

$$Loss_{PPK}(w, c_{pos}, c_{neg}) =$$

$$\max(0, m - E_{PPK}(w, c_{pos}) + E_{PPK}(w, c_{neg}))$$

... German musician and composer of the Baroque ...

E(composer, musician) > E(composer, banana)

$$Loss_{KL}(w, c_{pos}, c_{neg}) =$$

$$\max(0, m + KL(c_{pos}||w) - KL(c_{neg}||w))$$

(asymmetric supervision)

Related work

- Asymmetric, sparse, distributional [Baroni et al. 2012]
- Dense can be better [Baroni et al. 2014]
- Symmetric, dense [Bengio et al. 2003, Mikolov et al. 2013, many others]
- Bayesian matrix factorization [Salakhutdinov & Mnih 2008]
- (Mixture) density networks [Bishop 1994]
- Gaussian process neural nets [Damianou & Lawrence 2013]

Experimental results

- Synthetic hierarchies
- Entailment
- Word similarity tasks
- Scientific key phrase finding

Experimental results

- Synthetic hierarchies
- Entailment
- Word similarity tasks
- Scientific key phrase finding

Synthetic hierarchy

Train data

Objective

 $child \vdash parent$

 $KL(v_{child}||v_{parent})$

Synthetic hierarchy

Train data

Learned model

KL objective accurately learns all containments

- Synthetic hierarchies
- Entailment
- Word similarity tasks
- Scientific key phrase finding

- Synthetic hierarchies
- Entailment
- Word similarity tasks
- Scientific key phrase finding

Binary labeled dataset of entailment pairs [Baroni et al. 2012]

```
adrenaline is-a neurotransmitter
archbishop is-a clergyman
horse is-a mammal
pizza is-a food

horse is-a food
```

Binary labeled dataset of entailment pairs [Baroni et al. 2012]

```
adrenaline is-a neurotransmitter
archbishop is-a clergyman
horse is-a mammal
pizza is-a food

horse is-a food
```

aircrew is-not-a playlist
bamboo is-not-a bear

(-) no relation

Binary labeled dataset of entailment pairs [Baroni et al. 2012]

```
adrenaline is-a neurotransmitter
archbishop is-a clergyman
horse is-a mammal
pizza is-a food

horse is-a food
```

aircrew is-not-a playlist
bamboo is-not-a bear

(-) no relation

food is-not-a pizza molecule is-not-a carbohydrate (-) reversed gathering is-not-a seminar

- Model: diagonal (D) and spherical (S) variances
- Train: ~1b tokens Wikipedia + 3b tokens of newswire
- Evaluate: optimal F1 operating point, average precision

- Model: diagonal (D) and spherical (S) variances
- Train: ~1b tokens Wikipedia + 3b tokens of newswire
- Evaluate: optimal F1 operating point, average precision

Model	Test	Similarity	Best F1	AP
Baroni et al. (2012)	Е	balAPinc	75.1	_
Learned (D)	Е	KL	79.01	.80
Learned (S)	E	KL	79.34	.78

- Synthetic hierarchies
- Entailment
- Word similarity tasks
- Scientific key phrase finding

- Synthetic hierarchies
- Entailment
- Word similarity tasks
- Scientific key phrase finding

Symmetric word similarity

Word similarity tasks (e.g. WordSim-353)

```
(money, bank, 8.5)
(psychology, Freud, 8.21)
(media, radio, 7.42)
(drug, abuse, 6.85)
(Mars, scientist, 5.63)
(cup, object, 3.69)
(professor, cucumber, 0.31)
```

Evaluate: Spearman's ρ

Symmetric word similarity

	Vector	Spherical Gaussian		Diagonal Gaussian	
Dataset	SG (100d)	LG/50/m/S	LG/50/d/S	LG/50/m/D	LG/50/d/D
SimLex	31.13	32.23	29.84	31.25	30.50
WordSim	59.33	65.49	62.03	62.12	61.00
WordSim-S	70.19	76.15	73.92	74.64	72.79
WordSim-R	54.64	58.96	54.37	54.44	53.36
MEN	70.70	71.31	69.65	71.30	70.18
MC	66.76	70.41	69.17	67.01	68.50
RG	69.38	71.00	74.76	70.41	77.00
YP	35.76	41.50	42.55	36.05	39.30
Rel-122	51.26	53.74	51.09	52.28	53.54
Average	56.57	60.09	58.60	57.72	58.46
	. 4	A	.	÷	.
		:	:		
skip	.∻ o-gram	: sphere, µ	: sphere, u. Σ	: diagonal, µ	i diagonal, μ. Σ

- Synthetic hierarchies
- Entailment
- Word similarity tasks
- Scientific key phrase finding

- Synthetic hierarchies
- Entailment
- Word similarity tasks
- Scientific key phrase finding

What makes a good key-phrase?

- High frequency
- Predictive

What makes a good key-phrase?

- High frequency
- Predictive

Phrases	Frequent?	Predictive?
conventional wisdom suggests pre-defined categories	No	No
paper describes experimental results	Yes	No
EXPTIME complete autocorrelation function	No	Yes
operational semantics regular languages	Yes	Yes

Sample key-phrases from scientific paper abstracts:

linear matrix inequality satisfiability problem encryption schemes sparse matrix vector spaces exploratory study theoretical basis major contributions hot topic

Thank you! Conclusion

- Introduced Gaussian word embeddings:
 - Capture asymmetry
 - Capture **broadness** of meaning and **uncertainty**
 - Expressive, dense, distributed representation
 - Scalable learning
 - 4 billion tokens, 1 core, 8 hours

Future work:

- Multi-peaked, unnormalized, non-Gaussian
- Relations, documents, semantic frames
- Non-NLP domains for density representations