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DeBERTa – Overview

• Three techniques are proposed to improve the generalization 
performance of transformer language models

• Disentangled attention

• Enhanced mask decoder

• Scale Invariant Fine-tuning



DeBERTa – The improvements on pre-training

• DA (Disentangled Attention)
• EMD (Enhanced Mask Decoder)
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[SEP]
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E[SEP]
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Fig 1. The model architecture of DeBERTa



DeBERTa – Disentangled Attention(DA)

• In BERT, each word in the input layer is represented using a vector 
that sums its word (content) embedding and position embedding. 
Then this vector is passed to self-attention layers to calculate the 
dependencies among words.

• Problem with the position encoding in BERT
• The input vectors will be different at different positions for the 

same words.
A. Deep learning is an important area of artificial intelligence.
B. An important area of artificial intelligence is deep learning.



DeBERTa – Disentangled Attention
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• In DA, the attention weights are composed of three matrices

• Ablation study
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DeBERTa – Enhanced Mask Decoder

• Relative position encoding will have ambiguity 
issue with MLM in some cases.

• A new store opened beside the new mall

• In mask decoding layer, EMD add absolute 
position to the query of attention layer to 
incorporate that information back without 
directly affect content encoding.

• Ablation study

Fig 2. Enhanced Mask Decoder

Language Model Head

K VQ

H

Absolute position encoding

Transformer Layer

+



SiFT - Scale Invariant Fine Tuning

• Virtual Adversarial Training
• A regularization method for improving 

models’ generalization
• Suffers from instability issue when 

applies to large models as the variance of 
embeddings varies among words and 
models.

• SiFT
• Add a normalization layer to the 

embeddings, and apply perturbation to 
normalized embeddings.

Fig 3. The distribution of the variance of word 
embeddings of different models
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Fig 4. Performance on GLUE Dev



Experiments – Large model

• Settings
• Large model 24 layers, 16 heads, 1024 hidden size.
• Training 1M steps with 2k batch size using 78GB data.

• GLUE dev average score with large models
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Fig 5. Performance of large models on GLUE Dev



Experiments – Scale up with 1.5B Parameters

• We scale up our model with 1.5B parameters
• 48 layers, 1536 hidden size, 24 heads
• The first single model to surpass human performance on SuperGLUE.
• The SOTA model on GLUE and SuperGLUE as of 1/6/2021.
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Summary

• Three techniques is proposed to improve model performance,
• Disentangled Attention to improve position encoding in transformers
• Enhanced Mask Decoder to over come ambiguity issue with MLM
• Scale Invariant Fine-tuning to solve instability issue with adversarial training 

on large models

• Code & Blog

https://github.com/microsoft/DeBERTa
https://www.microsoft.com/en-us/research/blog/microsoft-deberta-surpasses-human-performance-on-the-superglue-benchmark/
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