Graph Coarsening with Neural Networks

Chen Cai*, Dingkang Wang, Yusu Wang

Motivation

- Make a small graph out of a large graph while preserving some properties
- Fundamental operation
- Useful for visualization, scientific computation, and other downstream tasks
- Teng & Spielman's famous edge sparsification algorithm

Graph coarsening

- You can not preserve everything in general. So what properties are you considering?
- Spectral property!

• Define projection/lift operator, graphs operator, and their properties

How to measure the quality?

• Compare
$$\mathcal{F}(\mathcal{O}_G,f)$$
 and $\mathcal{F}(\mathcal{O}_{\widehat{G}},\widehat{f})$

• ${\mathcal F}$ can be quadratic form or Rayleigh quotient

$$rac{x^T L x}{x^T x} = rac{x^T L x}{x^T x}$$

- $O_G, O_{\widehat{G}}$ are the Laplace operators
- f is graph signal such as the eigenvalues of graph Laplacian

Example

$$\mathcal{P} = P = \begin{bmatrix} 1/3 & 1/3 & 1/3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/3 & 1/3 & 1/3 \end{bmatrix} \quad \mathcal{U} = P^+ = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$

Proposition A.2. For any vector $\hat{x} \in \mathbb{R}^n$, we have that $Q_{\hat{L}}(\hat{x}) = Q_L(P^+\hat{x})$. In other words, set $x := P^+\hat{x}$ as the lift of \hat{x} in \mathbb{R}^N , then $\hat{x}^T\hat{L}\hat{x} = x^TLx$.

Proof. $\mathsf{Q}_L(\mathcal{U}\hat{x}) = (\mathcal{U}\hat{x})^T L \mathcal{U}\hat{x} = \hat{x}(P^+)^T L P^+ \hat{x}^T = \hat{x}^T \widehat{L}\hat{x} = \mathsf{Q}_{\widehat{L}}(\hat{x})$

Invariant

Quantity \mathcal{F} of interest	\mathcal{O}_G	Projection \mathcal{P}	Lift ${\cal U}$	$\mathcal{O}_{\widehat{G}}$	Invariant under \mathcal{U}
Quadratic form Q	L	P	P^+	Combinatorial Laplace \widehat{L}	$Q_L(\mathcal{U}\hat{x}) = Q_{\widehat{L}}(\hat{x})$
Rayleigh quotient R	L	${\Gamma^{-1/2}(P^+)}^T$	$P^+\Gamma^{-1/2}$	Doubly-weighted Laplace \widehat{L}	$R_L(\mathcal{U}\hat{x}) = R_{\widehat{l}}(\hat{x})$
Quadratic form Q	\mathcal{L}	$\widehat{D}^{1/2}PD^{-1/2}$	$D^{1/2}(P^+)\widehat{D}^{-1/2}$	Normalized Laplace $\widehat{\mathcal{L}}$	$Q_{\mathcal{L}}(\mathcal{U}\hat{x}) = Q_{\widehat{\mathcal{L}}}(\hat{x})$

Key Observation

- Existing coarsening algorithm does not optimize for edge weight
- Theory: convergence result
- Practice: nearly identical eigenvalues alignment after optimization
- So let's learn the edge weight
 - cvx. slow and does not generalize
 - Neural network: suboptimal but generalize

Graph cOarsening RefinemEnt Network (GOREN)

Experiments

- Extensive experiments on synthetic graphs and real networks
- Synthetic graphs from common generative models
- Real networks: shape meshes; citation networks; largest one has 89k nodes

Table 3: Loss: quadratic loss. Laplacian: combinatorial Laplacian for both original and coarse graphs. Each entry x(y) is: x = loss w/o learning, and y = improvement percentage.

Synthetic	Dataset	BL	Affinity	Algebraic Distance	Heavy Edge	Local var (edges)	Local var (neigh.)
	BA	0.44 (16.1%)	0.44 (4.4%)	0.68 (4.3%)	0.61 (3.6%)	0.21 (14.1%)	0.18 (72.7%)
	ER	0.36 (1.1%)	0.52 (0.8%)	0.35 (0.4%)	0.36 (0.2%)	0.18 (1.2%)	0.02 (7.4%)
	GEO	0.71 (87.3%)	0.20 (57.8%)	0.24 (31.4%)	0.55 (80.4%)	0.10 (59.6%)	0.27 (65.0%)
	WS	0.45 (62.9%)	0.09 (82.1%)	0.09 (60.6%)	0.52 (51.8%)	0.09 (69.9%)	0.11 (84.2%)
Real	CS	0.39 (40.0%)	0.21 (29.8%)	0.17 (26.4%)	0.14 (20.9%)	0.06 (36.9%)	0.0 (59.0%)
	Flickr	0.25 (10.2%)	0.25 (5.0%)	0.19 (6.4%)	0.26 (5.6%)	0.11 (11.2%)	0.07 (21.8%)
	Physics	0.40 (47.4%)	0.37 (42.4%)	0.32 (49.7%)	0.14 (28.0%)	0.15 (60.3%)	0.0 (-0.3%)
	PubMed	0.30 (23.4%)	0.13 (10.5%)	0.12 (15.9%)	0.24 (10.8%)	0.06 (11.8%)	0.01 (36.4%)
	Shape	0.23 (91.4%)	0.08 (89.8%)	0.06 (82.2%)	0.17 (88.2%)	0.04 (80.2%)	0.08 (79.4%)

Experiment

- Generalize to graph from same generative model
- Train on small subgraph, generalize to much large (**25x**) graphs
- Works for different objective functions, both differentiable or non-differentiable

Table 4: Loss: quadratic loss. Laplacian: normalized Laplacian for original and coarse graphs. Each entry x(y) is: x = loss w/o learning, and y = improvement percentage.

Synthetic	Dataset	BL	Affinity	Algebraic Distance	Heavy Edge	Local var (edges)	Local var (neigh.)
	BA	0.13 (76.2%)	0.14 (45.0%)	0.15 (51.8%)	0.15 (46.6%)	0.14 (55.3%)	0.06 (57.2%)
	ER	0.10 (82.2%)	0.10 (83.9%)	0.09 (79.3%)	0.09 (78.8%)	0.06 (64.6%)	0.06 (75.4%)
	GEO	0.04 (52.8%)	0.01 (12.4%)	0.01 (27.0%)	0.03 (56.3%)	0.01 (-145.1%)	0.02 (-9.7%)
	WS	0.05 (83.3%)	0.01 (-1.7%)	0.01 (38.6%)	0.05 (50.3%)	0.01 (40.9%)	0.01 (10.8%)
Real	CS	0.08 (58.0%)	0.06 (37.2%)	0.04 (12.8%)	0.05 (41.5%)	0.02 (16.8%)	0.01 (50.4%)
	Flickr	0.08 (-31.9%)	0.06 (-27.6%)	0.06 (-67.2%)	0.07 (-73.8%)	0.02 (-440.1%)	0.02 (-43.9%)
	Physics	0.07 (47.9%)	0.06 (40.1%)	0.04 (17.4%)	0.04 (61.4%)	0.02 (-23.3%)	0.01 (35.6%)
	PubMed	0.05 (47.8%)	0.05 (35.0%)	0.05 (41.1%)	0.12 (46.8%)	0.03 (-66.4%)	0.01 (-118.0%)
	Shape	0.02 (84.4%)	0.01 (67.7%)	0.01 (58.4%)	0.02 (87.4%)	0.0 (13.3%)	0.01 (43.8%)

Future work

- Combine with downstream tasks
 - Graph classification; scientific applications; combinatorial optimization on graphs...
- Optimize for node grouping operation
 - Reinforcement learning?
 - Gumbel-Softmax
- Extend to complex networks with node/edge features

Thank you!