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Federated Learning (FL) is usually formulated
as a distributed optimization problem
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Federated Learning (FL) is usually formulated
as a distributed optimization problem
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Solve this problem using FedAvg (local SGD):

e Optimize the global objective over
multiple communication rounds.

e At eachround, a subset of clients runs
local optimization and communicates
with the server.
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Federated Learning (FL) is usually formulated
as a distributed optimization problem
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global objective local client objectives

Solve this problem using FedAvg (local SGD):

e Optimize the global objective over
multiple communication rounds.

e At eachround, a subset of clients runs
local optimization and communicates
with the server.

Client-server communication is often slow &
expensive. How can we speed up training?
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Federated Learning (FL) is usually formulated
as a distributed optimization problem
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global objective local client objectives

Solve this problem using FedAvg (local SGD):

e Optimize the global objective over
multiple communication rounds.

e At eachround, a subset of clients runs
local optimization and communicates
with the server.

Client-server communication is often slow &
expensive. How can we speed up training?

v To speed up (x10-100) we can make clients
spend more time at each round on local
training (e.g., do more local SGD steps)
=> do more local progress, thereby reducing
the total number of communication rounds.

Server @

g\ [ol

Client
Population



Federated Learning (FL) is usually formulated
as a distributed optimization problem
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Solve this problem using FedAvg (local SGD):

e Optimize the global objective over
multiple communication rounds.

e At eachround, a subset of clients runs
local optimization and communicates
with the server.

Client-server communication is often slow &
expensive. How can we speed up training?

v To speed up (x10-100) we can make clients
spend more time at each round on local
training (e.g., do more local SGD steps)
=> do more local progress, thereby reducing
the total number of communication rounds.

X Because of client data heterogeneity, it turns
out that more local computation per round
results in convergence to inferior models!
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Convergence Issues: Toy Example (Least Squares in 2D)
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FedAvg Convergence
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We propose to approach FL as a distributed
posterior inference problem (new perspective)
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We propose to approach FL as a distributed
posterior inference problem (new perspective)

N N local posterior
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local likelihood

optima of the FL objective &
modes of the global posterior

Key idea:

given that any global posterior decomposes
into a product of local posteriors =

run local posterior inference,
then multiplicatively aggregate posteriors



Overcoming the Challenges of Posterior Inference

To make posterior inference tractable, we propose:
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To make posterior inference tractable, we propose:
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Overcoming the Challenges of Posterior Inference

To make posterior inference tractable, we propose:

~ —1
> Use Gaussian approximation fu = (Z n; 3, > (Z n;

-=> Use SG-MCMC for local inference

local posterior
covariances

local posterior
means

-> Convert matrix inversion into a stochastic optimization problem,

which is solved over multiple communication rounds




Federated Posterior Averaging (FedPA): A Practical Algorithm

On the server: . On the clients:

1. Distribute the initial state to clients 1. Run SGD-based MCMC
2. Collect & average deltas from clients : 2. As new samples arrive,
3. Take a gradient step: keep computing deltas 27;_1(& — ;)
N . 3. Send the final deltas to the server
0i11=0;—« [ %?i—l(et &= ﬂ12:| :
i=1 A
Identical to (generalized) FedAvg! : Similar to FedAvg, we run SGD on the clients,

[Reddi*, Charles*, et al., ICLR 2021] : but we compute deltas differently



http://go/adaptive-fed-opt

Does Posterior Inference Work?

Parameter space
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Eval Loss

Works Well on Real Benchmarks: Federated CIFAR100
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- Task: 100 class image classification, 500 clients (model: ResNet-18).
->  We “burn-in” FedPA by running it in the FedAvg regime for 400 rounds.

->  Starting round 400, we switch to FedPA computation of client deltas.



Eval Loss

x = FedAvg-ME x = FedPA-ME
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-> Task: 500 class multi-label classification, bag of words features, 300K+ clients.

->  We “burn-in” FedPA by running it in the FedAvg regime for 800 rounds.

->  Starting round 800, we switch to FedPA computation of client deltas.



Concluding Thoughts

-> Federated learning can be approached as a probabilistic inference problem,
which allows us to design new efficient FL algorithms + re-interpret well-known FedAvg

- Bayesian ML/DL is typically used for quantification of predictive uncertainty.
Turns out, it is also quite useful in distributed, communication-limited settings.

The classical view of FL:

Federated

Learning FedAvg




Learn More About Federated Posterior Averaging

Poster: #27

Code: https://github.com/alshedivat/fedpa

% Paper: https://arxiv.org/abs/2010.05273 Thank you !
D

60-minute talk: https://bit.ly/3w2PUTp Email: alshedivat@cs.cmu.edu
Twitter:  @alshedivat

Blog Blog post: https://bit.ly/3d83Jaj




