When Optimizing *f*-divergence is Robust with Label Noise

Jiaheng Wei and Yang Liu

University of California, Santa Cruz Department of Computer Science and Engineering {jiahengwei,yangliu}@ucsc.edu

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

An observation of f-divergence (D_f)

For an arbitrary classifier $h \in \mathcal{H}$, dataset (X, Y), define

Joint distribution: $P_{h \times Y} = \mathbb{P}(h(X) = y, Y = y'),$

Product distribution: $Q_{h \times Y} = \mathbb{P}(h(X) = y) \cdot \mathbb{P}(Y = y').$

Learning using D_f often returns us a good classifier h_f^* !

 $h_{f}^{*} = \operatorname*{argmax}_{h \in \mathcal{H}} D_{f} \left(\mathcal{P}_{h \times Y} || \mathcal{Q}_{h \times Y} \right)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

[More in Theorem 1, 3; Table 2]

Our questions

How robust is the optimization of D_f when label noise presents?

Learning with noisy labels

Only have (X, \tilde{Y}) , noise transition matrix T: $T_{i,j} = \mathbb{P}(\tilde{Y} = j | Y = i)$. *K*-class noise setting:

- Uniform noise: $\forall i \neq j, e_j = T_{i,j}$.
- Sparse noise: disjoint pairs of classes (i_c, j_c) , $T_{i_c, j_c} = e_{p_1}, T_{j_c, i_c} = e_{p_2}$.

Why we think so?

Peer loss [Liu and Guo, ICML'20]:

Robust loss with theoretical guarantee & No need of noise rates

Motivation:

Expectation of peer loss (w.r.t. ℓ_{CE}) is similar to variational form of D_f :

Variational form of f-divergence

An empirical alternative

Variational form of D_f on the noisy data X, \tilde{Y} :

$$\tilde{h}_{f}^{*} = \underset{h \in \mathcal{H}}{\operatorname{argmax}} \sup_{g} \underbrace{\widetilde{\mathsf{VD}}_{f}(h, g)}_{g(Z)} := \underbrace{\mathbb{E}_{Z \sim \tilde{P}_{h \times \tilde{Y}}} \left[g(Z)\right]}_{g(Z) = g(h(X), \tilde{Y})} - \underbrace{\mathbb{E}_{Z \sim \tilde{Q}_{h \times \tilde{Y}}} \left[f^{*}(g(Z))\right]}_{g(Z) = g(h(X), \tilde{Y}_{rand})}$$

where $f^*(u) = \sup_{v \in \mathbb{R}} \{uv - f(v)\}$ is the Fenchel duality of f(u).

Variational difference with noisy labels

Variational difference with noisy labels $\widetilde{VD}_f(h,g)$ is an affine transformation of $VD_f(h,g)$:

Theorem 4

$$\widetilde{\mathcal{WD}}_f(h,g) = (1-e_1-e_2)\mathcal{VD}_f(h,g) + \mathcal{B}ias_f(h,g)$$

where $\text{Bias}_{f}(h, g) := \sum_{i \in \{1,2\}} e_{i} \cdot (\mathbb{E}_{X}[g(h(X), i)] - \mathbb{E}_{X}[f^{*}(g(h(X), i))]).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

More theoretical results

Our theoretical results also include:

Impact of Bias_f is diminishing when noise rates are high [Lemma 1]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- When optimizing *D*_fs are robust [Theorem 6, 7, 8]
- Multi-class extension of Theorem 4 [Theorem 5, 9]

Implementation

Practical workflow

We adopt fixed g^* without updating from f-GAN [Nowozin et.al]

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Robustness of typical *f*-divergence functions

What *f*-divergence functions are robust in practice

D _f	T-V	J-S	KL	Pearson	Jeffrey	Reverse-KL	S-H
Robustness	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	X	X

How robust are D_f's on CIFAR-10

More works and acknowledgement

Other Relevant Works

- A more challenging noise setting, ICLR'21 Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
- High-order statistics: CVPR'21 (oral)
 A Second-Order Approach to Learning with Instance-Dependent Label Noise

Acknowledgement

This work is partially supported by the National Science Foundation (NSF) under grant IIS-2007951 and the Office of Naval Research under grant N00014-20-1-22.

Q&A

Meet us in Poster Session 3: May 3 at 17:00-19:00 PDT!

Our code is available at

https://github.com/UCSC-REAL/Robust-f-divergence-measures

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

