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Overview

An observation of f−divergence (Df )

For an arbitrary classifier h ∈ H, dataset (X ,Y ), define

Joint distribution: Ph×Y = P(h(X ) = y ,Y = y ′),

Product distribution: Qh×Y = P(h(X ) = y) · P(Y = y ′).

Learning using Df often returns us a good classifier h∗f !

h∗f = argmax
h∈H

Df (Ph×Y ||Qh×Y )

[More in Theorem 1, 3; Table 2]
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Our questions

How robust is the optimization of Df when label noise presents?

Learning with noisy labels

Only have (X , Ỹ ), noise transition matrix T : Ti,j = P(Ỹ = j |Y = i).
K−class noise setting:

Uniform noise: ∀i 6= j , ej = Ti,j .

Sparse noise: disjoint pairs of classes (ic , jc), Tic ,jc = ep1 ,Tjc ,ic = ep2 .
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Why we think so?

Peer loss [Liu and Guo, ICML’20]:

Robust loss with theoretical guarantee & No need of noise rates

Motivation:

Expectation of peer loss (w.r.t. `CE) is similar to variational form of Df :
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Variational form of f−divergence

An empirical alternative

Variational form of Df on the noisy data X , Ỹ :

where f ∗(u) = supv∈R{uv − f (v)} is the Fenchel duality of f (u).
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Variational difference with noisy labels

Variational difference with noisy labels ṼDf (h, g) is an affine
transformation of VDf (h, g):

Theorem 4

ṼDf (h, g) = (1− e1 − e2)VDf (h, g) + Biasf (h, g)

where Biasf (h, g) :=
∑

i∈{1,2} ei · (EX [g(h(X ), i)]−EX [f ∗ (g(h(X ), i))]).
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More theoretical results

Our theoretical results also include:

Impact of Biasf is diminishing when noise rates are high
[Lemma 1]

When optimizing Df s are robust
[Theorem 6, 7, 8]

Multi-class extension of Theorem 4
[Theorem 5, 9]
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Implementation

Practical workflow

We adopt fixed g∗ without updating from f-GAN [Nowozin et.al]
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Robustness of typical f−divergence functions

What f−divergence functions are robust in practice

Df T-V J-S KL Pearson Jeffrey Reverse-KL S-H

Robustness X X X X X 7 7

How robust are Df ’s on CIFAR-10
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More works and acknowledgement

Other Relevant Works

A more challenging noise setting, ICLR’21
Learning with Instance-Dependent Label Noise: A Sample Sieve
Approach

High-order statistics: CVPR’21 (oral)
A Second-Order Approach to Learning with Instance-Dependent
Label Noise
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Q&A

Meet us in Poster Session 3: May 3 at 17:00-19:00 PDT!
Our code is available at
https://github.com/UCSC-REAL/Robust-f-divergence-measures

https://github.com/UCSC-REAL/Robust-f-divergence-measures
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