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Generative Adversarial Nets (GANS) (coodteliow et aL. 2014]

Idea: A generator G vs. a discriminator D for generative modeling of pgatq(X)
* G(2) = pdata, Where z ~ N(0,1), U(—1,1), ...

mén max Lais(D; G) = Exnpynia 108(D(%))] + Egp(z)[log(1 — D(G(2)))]

real” “fake”

StyleGAN2 [Karras et al., 2020a]

[Goodfellow et al., 2014] Generative Adversarial Networks. NeurlPS 2014.
[Brock et al., 2019] Large Scale GAN Training for High Fidelity Natural Image Synthesis. ICLR 2019.
[Karras et al., 2020a] Analyzing and Improving the Image Quality of StyleGAN, CVPR 2020.



Data Augmentation for GAN is Non-trivial

GANs are always data-hungry! — “discriminator overfitting”
* One can try to collect more data [Brock et al., 2019], or to reqularize D [Miyato et al., 2018], ...

* ... but how about to simply use “stronger” data augmentation?

Challenge: How can we safely incorporate data augmentations for GANs?

«  "Augmentation leakage": Direct augmentation of pdata(x) can significantly shift the distribution

G(Z) — pdata(x) G(z) — pdata(T(X))? translation cutout
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[ZhaoZ et al., 2020b]

FID (mean, std)

[Miyato et al., 2018] Spectral Normalization for Generative Adversarial Networks, ICLR 2018.
[Brock et al., 2019] Large Scale GAN Training for High Fidelity Natural Image Synthesis, ICLR 2019.
[ZhaoZ et al., 2020b] Image Augmentations for GAN Training, 2020.



Data Augmentation for GAN is Non-trivial

Challenge: How can we safely incorporate data augmentations for GANs?

«  “Augmentation leakage”: Direct augmentation of paata(x) can significantly shift the distribution

“GAN-compatible” data augmentations?

» Consistency regularization [Zhang et al., 2020; ZhaoZ et al., 2020a] — “Flip + Translation”

» Differentiable augmentation [ZhaoS et al,, 2020] = "“Flip + Translation + CutOut”

* Adaptive discriminator augmentation [Karras et al., 2020a] = Dynamic pipelining of augmentations

* AdvAug [Chen et al,, 2021] = DiffAug + Adversarial augmentation

How can we further extend this boundary of "GAN-compatible” augmentations?
Idea: Make D to learn a contrastive representation of real + fake!

[Zhang et al., 2020] Consistency Regularization for Generative Adversarial Networks. ICLR 2020.

[ZhaoZ et al., 2020a] Improved Consistency Regularization for GANs. 2020.

[ZhaoS et al., 2020] Differentiable Augmentation for Data-Efficient GAN Training, NeurlPS 2020.

[Karras et al., 2020a] Analyzing and Improving the Image Quality of StyleGAN, CVPR 2020.

[Chen et al., 2021] Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly, 2021.



Contrastive Representation Learning

An encoder f is learned to extract the shared features between two views v and v(?
[van den Oord et al., 2018; He et al., 2019; Chen et al., 2020]

SimCLR [Chen et al,, 2020] defines the views by “Resize + Crop + Flip + Colorditter + Gray + GaussianBlur”

» Unlike current GANs, contrastive learning can much benefits from stronger augmentations
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[van den Oord et al., 2018] Representation Learning with Contrastive Predictive Coding, NeurlPS 2018.
[He et al., 2019] Momentum Contrast for Unsupervised Visual Representation Learning. CVPR 2020.
[Chen et al,, 2020] A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020.



Contrastive Learning for GAN Discriminators?

=) Can we leverage the “SimCLR"” augmentations for training GAN?

ContraD: We propose a contrastive learning scheme for GAN discriminators
* Modifies only the discriminator objective upon any GAN training
« TIdea: Dis NOT directly optimized for the GAN loss Lgis, but its contrastive alternative Lim + L_,,
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ContraD: the Contrastive Discriminator

1. ContraD is equivalent to SImCLR [Chen et al, 2020] for the “real” samples
* We can naturally adopt the strong augmentations from SimCLR to train D
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[Chen et al., 2020] A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020.




ContraD: the Contrastive Discriminator

2. L%, may not be enough to discriminate real vs. fake
* Supervised Contrastive Learning [Khosla et al., 2020] for the “fake” samples
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[Khosla et al., 2020] Supervised Contrastive Learning, NeurlPS 2020.



ContraD: the Contrastive Discriminator

3. The “actual” discriminator = 2-layer NN h, upon the contrastive representation
Lgis is minimized only at hg to maintain the GAN dynamics
Lg; s does not affect D, due to the stop_grad operation in between

Lais(ha) := —E[log ha(sg(D(vy)))] — Ellog (1 — ha(sg(D(vz))))]
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ContraD: the Contrastive Discriminator

The full ContraD training is an alternating minimization of Lp and L, like other GANs

LD .= L—I_ + Lc_on + Ldis

con

Lg := —Ellog hq(D(vs))]
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Experiments: ContraD improves GAN

ContraD significantly improves GANs by successfully incorporating the SImCLR augmentations
*  SImCLR = "Resize + Crop + Flip + ColordJitter + Gray + GaussianBlur”

ContraD (FID: 10.9) bCR (FID: 14.0)
=[S  [LET | [oR 2 S Table 1: Comparison of the best FID score and IS on unconditional image generation of CIFAR-10
N;"" z “'"i""'$“' A | g 1= and CIFAR-100. Values in the rows marked by * are from those reported in its reference.
: %4104 ) ! " X 1
[ I,"""" < il A G CIFAR-10 CIFAR-100
- - .
“ A‘ ]‘r‘; 2, - Architecture Method Augment. FID| IST FID] ISt
’ - 266 738 285 725
. s LR (Zhang et al., 2020) HFlip, Trans 195 7.87 222 791
g: iﬁ[[))((:‘giﬁ bCR (Zhao et al., 2020c) HFlip, Trans 14.0 8.35 19.2 8.46
o DiffAug (Zhao et al., 2020a) Trans, CutOut 229 7.64 27.0 747
ContraD (ours) SimCLR 10.9 8.78 15.2 9.09
- 41.3 6.33 52.3 5.24
N CR (Zhang et al., 2020) HFlip, Trans  32.1 7.08 365 6.5
g .‘iﬁqR[;%P? el?—r;q}{ bCR (Zhao et al., 2020c) HFlip, Trans 22.8 1.29 28.2 7.30
o ’ DiffAug (Zhao et al., 2020a) Trans, CutOut 59.5 5.62 587 539
ContraD (ours) SimCLR 98 9.09 15.0 9.56

- - 11.1 9.18 16.5  9.51
DiffAug* (Zhao et al., 2020a)  Trans, CutOut  9.89  9.40 15.2 10.0
ContraD (ours) SimCLR 9.80 947 14.1 10.0

G: StyleGAN2
D: StyleGAN2

[Zhang et al., 2020] Consistency Regularization for Generative Adversarial Networks. ICLR 2020.
[Zhao et al., 2020c] Improved Consistency Regularization for GANs. 2020.
[Zhao et al., 2020a] Differentiable Augmentation for Data-Efficient GAN Training, NeurlPS 2020.



Experiments: ContraD improves GAN

ContraD significantly improves GANs by successfully incorporating the SImCLR augmentations

« Less sensitive to architecture: ContraD could offer a stable training even when G (= DCGAN) <« D (= ResNet-18)

ContraD (FID: 10.9)

Table 1: Comparison of the best FID score and IS on unconditional image generation of CIFAR-10
and CIFAR-100. Values in the rows marked by * are from those reported in its reference.

CIFAR-10 CIFAR-100

Architecture Method Augment. FID| IST FID] ISt

- - 26.6 7.38 28.5 7.25

Lo s CR (Zhang et al., 2020) HFlip, Trans 19.5 7.87 222 791

| 3 A cile ol 5 g; ONDCCAN  BCR (Zhao et al., 2020c) HFlip, Trans 140 835 192  8.46
o [ .'n']_ R " e T DiffAug (Zhao et al., 2020a) Trans, CutOut 229 7.64 270 747
DiffAug (FID: 22.9) ContraD (ours) SimCLR 10.9 8.78 15.2 9.09

- - 41.3 6.33 52.3 5.24

Lo s CR (Zhang et al., 2020) HFlip, Trans 321 7.08 36.5 6.55

g ' SﬁR[;E;IEJJ e?l';ig bCR (Zhao et al., 2020c) HFlip, Trans 228 1.29 28.2 7.30

’ ’ DiffAug (Zhao et al., 2020a) Trans, CutOut 59.5 5.62 587 539

ContraD (ours) SimCLR 98 9.09 15.0 9.56

- - 11.1 9.18 16.5  9.51
DiffAug* (Zhao et al., 2020a)  Trans, CutOut  9.89  9.40 15.2 10.0
ContraD (ours) SimCLR 9.80 947 14.1 10.0

G: StyleGAN2
D: StyleGAN2

[Zhang et al., 2020] Consistency Regularization for Generative Adversarial Networks. ICLR 2020.
[Zhao et al., 2020c] Improved Consistency Regularization for GANs. 2020.
[Zhao et al., 2020a] Differentiable Augmentation for Data-Efficient GAN Training, NeurlPS 2020.



Experiments: ContraD improves SImCLR

Interestingly, ContraD could also improve the underlying SImCLR as well

»  Better linear evaluation and transfer learning performance than only L. is minimized (= SimCLR)

con
« “Linear evaluation”? - Train a linear classifier w/ labels upon the frozen D-representation

« Tested on CIFAR-10/100 (top) and ImageNet (bottom) datasets

Table 3: Comparison of classification accuracy under linear evaluation protocol on CIFAR-10 and
CIFAR-100. We report the mean and standard deviation across 3 runs of the evaluation.

Dataset Training SNDCGAN  SNResNet-18  StyleGAN2
SIMCLR (Aeop = Agss = 0) 72.9+0.02 80.3+0.05 86.2+0.06
CIFAR-10 ContraD (ours) 77.5+0.20 85.7+0.10 88.6+0.06
SIMCLR (Acon = Aaqis = 0) 30.8+0.11 41.24006 61.1+0.06
CIFAR-100 ContraD (ours) 3744006 51.1+0.18 68.1+0.07

Table 9: Comparison linear evaluation and transfer learning performance across 6 natural image
classification datasets for BigGAN discriminators pretrained on ImageNet (64 x 64). We report the
top-1 accuracy except for ImageNet and SUN397, which we instead report the top-5 accuracy.

Training (BigGAN) ImageNet | CIFARIO CIFAR100 DTD SUN397 Flowers Food
Supervised (ImageNet) 63.5 | 76.1 55.2 454 31.7 78.1 445
SIMCLR (Acon = Aais = 0) 43.4 81.2 553 439 37.6 69.8 38.8

ContraD (ours) 51.5 84.5 61.1 50.6 44.4 78.6 44.5




Experiments

ContraD significantly improves GANs by successfully incorporating the SImCLR augmentations

« Less sensitive to architecture: ContraD could offer a stable training even when G (= DCGAN) <« D (= ResNet-18)

Interestingly, ContraD could also improve the underlying SImCLR as well
«  Better linear evaluation and transfer learning performance than only L. _is minimized (= SIimCLR)
.. And many more results can be found in the full paper!

* More challenging datasets: CelebA-HQ (128 x 128), AnimalFaces-HQ (512 x 512), and ImageNet w/ BigGAN
« ContraD works for a wide range of datasets, especially under regime of limited data

* Application of ContraD: Self-conditional sampling
« ContraD can induce many cGANs leveraging the learned contrastive representation

» Detailed ablation study

14



Summary

TL;DR: GAN and SimCLR benefit each other when they are jointly trained

We propose ContraD = Contrastive learning for GAN discriminators
1. Enables stronger data augmentation — improved, data-efficient GAN training
2. Can improve the underlying contrastive learning as well
3. Still maintains "contrastive representation” — other downstream tasks

More details can be found:
« Paper: https://arxiv.org/abs/2103.09742
« Code: https://github.com/jh-jeong/ContraD

Please drop by our poster session for more information!
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