DC3: A learning method for optimization with hard constraints

Priya L. Donti^{1,*}, **David Rolnick**^{2,*}, J. Zico Kolter^{1,3}

¹Carnegie Mellon ² McGill, Mila ³ Bosch Center for AI

Motivation

Problem setting

Goal: Approximate mapping from x to y, while satisfying constraints

 $\min_y f_x(y)$ s.t. $g_x(y) \leq 0$ $h_x(y) = 0$

Equality completion

Output subset of variables

$$z = N_{\theta}(x)$$

Then solve for rest: $\varphi_x(z)$ where $\varphi_x : \mathbb{R}^m \to \mathbb{R}^{n-m}$ s.t. $h_x([z^T \ \varphi_x(z)^T])^T = 0$

Procedure is **differentiable** (either explicitly or via implicit function thm)

Inequality correction

Gradient steps along manifold defined by equality constraints

$$\rho_x \left(\begin{bmatrix} z \\ \varphi_x(z) \end{bmatrix} \right) = \begin{bmatrix} z - \gamma \Delta z \\ \varphi_x(z) - \gamma \Delta \varphi_x(z) \end{bmatrix},$$

for
$$\Delta z = \nabla_z \left\| \operatorname{ReLU} \left(g_x \left(\begin{bmatrix} z \\ \varphi_x(z) \end{bmatrix} \right) \right) \right\|_2^2$$
,
 $\partial \varphi_x(z)$

$$\Delta \varphi_x(z) = \frac{\partial \varphi_x(z)}{\partial z} \Delta z$$

End-to-end training with soft loss

Experiments

Convex QP minimize
$$\frac{1}{2}y^TQy + p^Ty$$
, s.t. $Ay = x, Gy \le h$

Simple
non-convex
$$\min_{y \in \mathbb{R}^n} \frac{1}{2}y^T Q y + p^T \sin(y), \text{ s.t. } Ay = x, \ Gy \le h$$

AC optimal power flow

$$\begin{array}{l} \underset{p_g \in \mathbb{R}^b, \ q_g \in \mathbb{R}^b, \ v \in \mathbb{C}^b}{\text{min}} \quad p_g^T A p_g + b^T p_g \\ \text{subject to} \quad p_g^{\min} \leq p_g \leq p_g^{\max} \\ \quad q_g^{\min} \leq q_g \leq q_g^{\max} \\ \quad v^{\min} \leq |v| \leq v^{\max} \\ \quad (p_g - p_d) + (q_g - q_d)i = \operatorname{diag}(v) \overline{W} \overline{v}. \end{array}$$

Results on AC optimal power flow

10x faster than optimizer, 0.22% optimality gap **Satisfies all constraints** (unlike other DL methods)

	Obj. value	Max eq.	Mean eq.	Max ineq.	Mean ineq.	Time (s)
Optimizer	3.81 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.949 (0.002)
DC3	3.82 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.089 (0.000)
DC3, \neq	3.67 (0.01)	0.14 (0.01)	0.02 (0.00)	0.00 (0.00)	0.00(0.00)	0.040 (0.000)
DC3, ≰ train	3.82 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.089 (0.000)
DC3, ≰ train/test	3.82 (0.00)	0.00 (0.00)	0.00 (0.00)	0.01 (0.00)	0.00 (0.00)	0.039 (0.000)
DC3, no soft loss	3.11 (0.05)	2.60 (0.35)	0.07 (0.00)	2.33 (0.33)	0.03 (0.01)	0.088 (0.000)
NN	3.69 (0.02)	0.19 (0.01)	0.03 (0.00)	0.00 (0.00)	0.00 (0.00)	0.001 (0.000)
NN, \leq test	3.69 (0.02)	0.16 (0.00)	0.02 (0.00)	0.00 (0.00)	0.00 (0.00)	0.040 (0.000)
Eq. NN	3.81 (0.00)	0.00 (0.00)	0.00 (0.00)	0.15 (0.01)	0.00 (0.00)	0.039 (0.000)
Eq. NN, \leq test	3.81 (0.00)	0.00 (0.00)	0.00 (0.00)	0.15 (0.01)	0.00 (0.00)	0.078 (0.000)

Summary

