
DC3: A learning method for 
optimization with hard constraints

Priya L. Donti1,*, David Rolnick2,*, J. Zico Kolter1,3

1 Carnegie Mellon   2 McGill, Mila   3 Bosch Center for AI



Motivation

2



3

Goal: Approximate mapping from 𝑥 to 𝑦, while satisfying constraints

Problem setting



Overview of DC3

4

Input x

correction
( ≤ )completion

( = )

neural
network

Output

Loss



Overview of DC3

5

Input x

correction
( ≤ )

neural
network

Output

Loss

completion
( = )



Overview of DC3

6

Input x

completion
( = )

neural
network

Loss

correction
( ≤ )

Output



Overview of DC3

7

Input x

correction
( ≤ )completion

( = )

Loss

neural
network

Output

Published as a conference paper at ICLR 2021

3 DC3: DEEP CONSTRAINT COMPLETION AND CORRECTION

In this work, we consider solving families of optimization problems for which the objectives and/or
constraints vary across instances. Formally, let x 2 Rd denote the problem data, and y 2 Rn denote
the solution of the corresponding optimization problem (where y depends on x). For any given x,
our aim is then to find y solving:

minimize
y2Rn

fx(y), s. t. gx(y)  0, hx(y) = 0, (1)

(where f , g, and h are potentially nonlinear and non-convex). Solving such a family of optimization
problems can be framed as a learning problem, where an algorithm must predict an optimal y from
the problem data x. We consider deep learning approaches to this task – that is, training a neural
network N✓, parameterized by ✓, to approximate y given x.

A naive deep learning approach to approximating such a problem involves viewing the constraints
as a form of regularization. That is, for training examples x(i), the algorithm learns to minimize a
composite loss containing both the objective and two “soft loss” terms representing violations of the
equality and inequality constraints:

`soft(ŷ) = fx(ŷ) + �gkReLU(gx(ŷ))k22 + �hkhx(ŷ)k22. (2)

An alternative framework (see, e.g., Zamzam & Baker (2019)) is to use supervised learning on
examples (x(i), y(i)) for which an optimum y(i) is known. In this case, the loss is simply ||ŷ�y(i)||22.
However, both these procedures for training a neural network can lead in practice to highly infeasible
outputs (as we demonstrate in our experiments), because they do not strictly enforce constraints.
Supervised methods also require constructing a training set (e.g., via an exact solver), a sometimes
difficult or expensive step that DC3 circumvents by training directly from the problem specification.

To address this challenge, we introduce the method of Deep Constraint Completion and Correc-
tion (DC3), which allows hard constraints to be integrated into the training of neural networks. In
particular, the DC3 method includes the following two innovations:

Equality completion. We provide a mechanism to enforce equality constraints during training and
testing, inspired by the literature on variable elimination. Specifically, rather than outputting the
full-dimensional optimization solution directly, we first output a subset of the variables, and then
infer the remaining variables via the equality constraints – either explicitly, or by solving an implicit
set of equations (through which we can then backpropagate via the implicit function theorem).

Inequality correction. We correct for violation of the inequality constraints by mapping infeasible
points to feasible points using an internal gradient descent procedure during training. This allows us
to fix inequality violations while taking steps along the manifold of points satisfying the equalities,
which yields an output that is feasible with respect to all constraints.

Overall, our algorithm is to train a neural network N✓(x) to output a partial set of variables z.
These variables are then completed to a full set of variables ỹ satisfying the equality constraints. In
turn, ỹ is corrected to ŷ to satisfy the inequality constraints while continuing to satisfy the equality
constraints. The overall network is trained using backpropagation on the soft loss described in
Equation (2) (which is necessary for correction, as noted below). Importantly, both the completion
and correction procedures are differentiable either implicitly or explicitly (allowing network training
to take them into account), and the overall framework is agnostic to the choice of neural network
architecture. Pseudocode for this full procedure is given in Algorithm 1.

We note that as this procedure is somewhat general, in cases where constraints have a specialized
structure, specialized techniques may be more appropriate to use. For instance, while we examine
linearly-constrained settings in our experiments for the purposes of illustration, in practice, tech-
niques such as Minkowski-Weyl decomposition or Cholesky factorization (see Frerix et al. (2020),
Amos & Kolter (2017)) may be more efficient in these settings. However, for more general settings
without this kind of structure – e.g., for non-convex problems such as AC optimal power flow, which
we examine in our experiments – the DC3 framework can provide a (differentiable) mechanism for
satisfying hard constraints in practice.

We now describe the completion and correction procedures in more detail.
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3.2 INEQUALITY CORRECTION

While the completion procedure described above guarantees feasibility with respect to the equality
constraints, it does not ensure that the inequality constraints will be satisfied. To additionally ensure
feasibility with respect to the inequality constraints, our algorithm incorporates a correction proce-
dure that maps the outputs from the previous step into the feasible region. In particular, we employ a
gradient-based correction procedure that takes gradient steps in z towards the feasible region along

the manifold of points satisfying the equality constraints.

Let ⇢x(y) be the operation that takes as input a point y =
⇥
zT 'x(z)T

⇤T , and moves it closer to
satisfying the inequality constraints by taking a step along the gradient of the inequality violation
with respect to the partial variables z. Formally, for a learning rate � > 0, we define:
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While gradient descent methods do not always converge to global (or local) optima for general
optimization problems, if initialized close to an optimum, gradient descent is highly effective in
practice for non-pathological settings (see e.g. Busseti et al. (2019); Lee et al. (2017)). At test
time, the input to the DC3 correction procedure should already be close to feasible with respect to
the inequality constraints, as it is the output of a differentiable completion process that is trained
using the soft loss `soft. Therefore, we may expect that in practice, the limit limt!1 ⇢(t)x (y) will
converge to a point satisfying both inequality and equality constraints (while for problems with
linear constraints as in §4.1–4.2, the correction process is mathematically guaranteed to converge).

As the exact limit limt!1 ⇢(t)x (y) is difficult to calculate in practice, we make approximations at
both training and test time. Namely, we apply ⇢(t)x (y) to the output of the completion procedure, with
t = ttrain relatively small at train time to allow backpropagation through the correction. Depending
on time constraints, this same value of t may be used at test time, or a larger value t = ttest > ttrain
may be used to ensure convergence to a feasible point.

4 EXPERIMENTS

We evaluate DC3 for convex quadratic programs (QPs), a simple family of non-convex optimization
problems, and the real-world task of AC optimal power flow (ACOPF).1 In particular, we assess our
method on the following criteria:

• Optimality: How good is the objective value fx(y) achieved by the final solution?

• Feasibility: How much, if at all, does the solution violate the constraints? Specifically,
what are the maximum and mean feasibility violations of the inequality and equality con-
straints: max(ReLU(gx(y))), mean(ReLU(gx(y))), max(hx(y)), and mean(hx(y))?

• Speed: How fast is the method?

We compare DC3 against the following methods (referred to by abbreviations in our tables below):

• Optimizer: A traditional optimization solver. For convex QP settings, we use OSQP (Stel-
lato et al., 2020), as well as the batched, differentiable solver qpth developed as part
of OptNet (Amos & Kolter, 2017). For the generic non-convex setting, we use IPOPT
(Wächter & Biegler, 2006). For ACOPF, we use the solver provided by PYPOWER, a
Python port of MATPOWER (Zimmerman et al., 1997).

• NN: A simple deep learning approach trained to minimize a soft loss (Equation (2)).

1Code for all experiments is available at https://github.com/locuslab/DC3
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An alternative framework (see, e.g., Zamzam & Baker (2019)) is to use supervised learning on
examples (x(i), y(i)) for which an optimum y(i) is known. In this case, the loss is simply ||ŷ�y(i)||22.
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• NN,  test: The NN approach, with a gradient-based correction procedure2 applied to the
output at test time in an effort to mitigate violations of equality and inequality constraints.
Unlike in DC3, correction is not used during training, and completion is not used at all.

• Eq. NN: A more sophisticated approach inspired by3 that in Zamzam & Baker (2019),
where (i) the neural network outputs a partial set of variables ẑ, which is completed to the
full set using the equality constraints, (ii) training is performed by supervised learning on
optimal pairs (x(i), z(i)) with loss function ||ẑ� z(i)||22, not using the objective value at all.

• Eq. NN,  test: The approach in Eq. NN, augmented with gradient-based correction at test
time to mitigate violations of equality and inequality constraints.

We also attempted to use the output of the NN method as a “warm start” for traditional optimizers,
but found that the NN output was sufficiently far from feasibility that it did not help.

In addition, we consider weaker versions of DC3 in which components of the algorithm are ablated:

• DC3, 6=. The DC3 algorithm with completion ablated. All variables are output by the
network directly and correction is performed by taking gradient steps for both equality and
inequality constraints.

• DC3, 6 train. The DC3 algorithm with correction ablated at train time. Correction is still
performed at test time.

• DC3, 6 train/test. The DC3 algorithm with correction ablated at both train and test time.
• DC3, no soft loss. The DC3 algorithm with training performed to minimize the objective

value only, without auxiliary terms capturing equality and inequality violation.

As our overall framework is agnostic to the choice of neural network architecture, to facilitate com-
parison, we use a fixed neural network architecture across all experiments: fully connected with two
hidden layers of size 200, including ReLU activation, batch normalization, and dropout (with rate
0.2) at each hidden layer (Ioffe & Szegedy, 2015; Srivastava et al., 2014). For our correction proce-
dure, we use ttrain = ttest = 10 for the convex QP and simple non-convex tasks and ttrain = ttest = 5
for ACOPF (see Appendix B). All neural networks are trained using PyTorch (Paszke et al., 2019).

To generate timing results, all neural nets and the qpth optimizer were run with full paralleliza-
tion on a GeForce GTX 2080 Ti GPU. The OSQP, IPOPT, and PYPOWER optimizers were run
sequentially on an Intel Xeon 2.10GHz CPU, and we report the total time divided by the number of
test instances to simulate full parallelization. As our implementations are not tightly optimized, we
emphasize that all timing comparisons are approximate.

4.1 CONVEX QUADRATIC PROGRAMS

As a first test of the DC3 method, we consider solving convex quadratic programs with a quadratic
objective function and linear constraints. Note that we examine this simple task first for illustration,
but the general DC3 method is assuredly overkill for solving convex quadratic programs. It may not
even be the most efficient deep learning-based method for constraint enforcement on this task, since
more specialized techniques are available in such linearly constrained settings (Frerix et al., 2020).

We consider the following problem:

minimize
y2Rn

1

2
yTQy + pT y, s. t. Ay = x, Gy  h, (5)

for constants Q 2 Rn⇥n ⌫ 0, p 2 Rn, A 2 Rneq⇥n, G 2 Rnineq⇥n, h 2 Rnineq , and variable x 2 Rneq

which varies between problem instances. We must learn to approximate the optimal y given x.
2Note that this correction procedure is not exactly the same as that described in Section 3.2, as the outputs

of the NN baseline do not necessarily meet the prerequisite of satisfying the equality constraints. Instead, we
adjust the full set of output variables directly with respect to gradients of the inequality and equality violations.

3In Zamzam & Baker (2019), the authors employ one step of an ACOPF-specific heuristic called PV/PQ
switching to correct inequality constraint violations at test time. We do not apply this heuristic here in the
spirit of presenting a more general framework. As PV/PQ switching is not necessarily guaranteed to correct
all inequality violations (although it can work well in practice), in principle, one could consider employing a
combination of PV/PQ switching and gradient-based corrections in the context of ACOPF.
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Obj. value Max eq. Mean eq. Max ineq. Mean ineq. Time (s)

Optimizer (OSQP) -15.05 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.002 (0.000)
Optimizer (qpth) -15.05 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.454 (0.110)
DC3 -13.46 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.017 (0.001)
DC3, 6= -12.58 (0.04) 0.35 (0.00) 0.13 (0.00) 0.00 (0.00) 0.00 (0.00) 0.008 (0.000)
DC3, 6 train -1.39 (0.97) 0.00 (0.00) 0.00 (0.00) 0.02 (0.02) 0.00 (0.00) 0.017 (0.000)
DC3, 6 train/test -1.23 (1.21) 0.00 (0.00) 0.00 (0.00) 0.10 (0.13) 0.01 (0.01) 0.001 (0.000)
DC3, no soft loss -21.84 (0.00) 0.00 (0.00) 0.00 (0.00) 23.83 (0.11) 4.04 (0.01) 0.017 (0.000)
NN -12.57 (0.01) 0.35 (0.00) 0.13 (0.00) 0.00 (0.00) 0.00 (0.00) 0.001 (0.000)
NN,  test -12.57 (0.01) 0.35 (0.00) 0.13 (0.00) 0.00 (0.00) 0.00 (0.00) 0.008 (0.000)
Eq. NN -9.16 (0.75) 0.00 (0.00) 0.00 (0.00) 8.87 (0.72) 0.91 (0.09) 0.001 (0.000)
Eq. NN,  test -14.68 (0.05) 0.00 (0.00) 0.00 (0.00) 0.89 (0.05) 0.07 (0.01) 0.018 (0.001)

Table 1: Results on QP task for 100 variables, 50 equality constraints, and 50 inequality constraints.
We compare the performance of DC3 and other algorithms according to the objective value and
max/mean values of equality/inequality constraint violations, each averaged across test instances.
We also compare the total time required to run on all 833 test instances, assuming full parallelization.
(Std. deviations across 5 runs are shown in parentheses for all figures reported.) Lower values are
better for all metrics. We find that methods other than DC3 and Optimizer violate feasibility (as
shown in red). DC3 gives a feasible output with reasonable objective value 85⇥ faster than qpth
and only 9⇥ slower than OSQP, which is optimized for convex QPs.

In our experiments, we take Q to be a diagonal matrix with all diagonal entries drawn i.i.d. from
the uniform distribution on [0, 1], ensuring that Q is positive semi-definite. We take matrices A,G
with entries drawn i.i.d. from the unit normal distribution. We assume that in each problem instance,
all entries of x are in the interval [�1, 1]. In order to ensure that the problem is feasible, we take
h =

P
j |(GA+)ij |, where A+ is the Moore-Penrose pseudoinverse of A; namely, for this choice of

h, the point y = A+x is feasible (but not, in general, optimal), because:

AA+x = x, GA+x 
X

j

��(GA+)ij
�� since |xj |  1. (6)

During training, we use examples x with entries drawn i.i.d. from the uniform distribution on [�1, 1].

Table 1 compares the performance of DC3 (and various ablations of DC3) with traditional optimiz-
ers and other deep learning-based methods, for the case of n = 100 variables and neq = nineq = 50.
In Appendix A, we evaluate settings with other numbers of equality and inequality constraints. Each
experiment is run 5 times for 10,000 examples x (with train/test/validation ratio 10:1:1). Hyperpa-
rameters are tuned to maximize performance for each method individually (see Appendix B).

We find that DC3 preserves feasibility with respect to both equality and inequality constraints, while
achieving reasonable objective values. (The average per-instance optimality gap for DC3 over the
classical optimizer is 10.59%.) For every baseline deep learning algorithm, on the other hand,
feasibility is violated significantly for either equality or inequality constraints. As expected, “DC3
6=” (completion ablated) results in violated equality constraints, while “DC3 6” (correction ablated)
violates inequality constraints. Ablating the soft loss also results in violated inequality constraints,
leading to an objective value significantly lower than would be possible were constraints satisfied.

Even though we have not optimized the code of DC3 to be maximally fast, our implementation of
DC3 still runs about 85⇥ faster than the state-of-the-art differentiable QP solver qpth, and only
about 9⇥ slower than the classical optimizer OSQP, which is specifically optimized for convex QPs.
Furthermore, this assumes OSQP is fully parallelized – in this case, across 833 CPUs – whereas
standard, non-parallel implementations of OSQP would be orders of magnitude slower. By contrast,
DC3 is easily parallelized within a single GPU using standard deep learning frameworks.

4.2 SIMPLE NON-CONVEX OPTIMIZATION

We now consider a simple non-convex adaptation of the quadratic program above:

minimize
y2Rn

1

2
yTQy + pT sin(y), s. t. Ay = x, Gy  h,
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Obj. value Max eq. Mean eq. Max ineq. Mean ineq. Time (s)

Optimizer (IPOPT) -11.59 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.121 (0.000)
DC3 -10.66 (0.03) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.013 (0.000)
DC3, 6= -10.04 (0.02) 0.35 (0.00) 0.13 (0.00) 0.00 (0.00) 0.00 (0.00) 0.009 (0.000)
DC3, 6 train -0.29 (0.67) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.00 (0.00) 0.010 (0.004)
DC3, 6 train/test -0.27 (0.67) 0.00 (0.00) 0.00 (0.00) 0.03 (0.03) 0.00 (0.00) 0.001 (0.000)
DC3, no soft loss -13.81 (0.00) 0.00 (0.00) 0.00 (0.00) 15.21 (0.04) 2.33 (0.01) 0.013 (0.000)
NN -10.02 (0.01) 0.35 (0.00) 0.13 (0.00) 0.00 (0.00) 0.00 (0.00) 0.001 (0.000)
NN,  test -10.02 (0.01) 0.35 (0.00) 0.13 (0.00) 0.00 (0.00) 0.00 (0.00) 0.009 (0.000)
Eq. NN -3.88 (0.56) 0.00 (0.00) 0.00 (0.00) 6.87 (0.43) 0.72 (0.05) 0.001 (0.000)
Eq. NN,  test -10.99 (0.03) 0.00 (0.00) 0.00 (0.00) 0.87 (0.04) 0.06 (0.00) 0.013 (0.000)

Table 2: Results on our simple nonconvex task for 100 variables, 50 equality constraints, and 50
inequality constraints, with details as in Table 1. Since this problem is nonconvex, we use IPOPT
as the classical optimizer. DC3 is differentiable and about 9⇥ faster than IPOPT, giving a near-
optimal objective value and constraint satisfaction, in contrast to baseline deep learning-based meth-
ods which result in significant constraint violations.

where sin(y) denotes the componentwise application of the sine function to the vector y, and where
all constants and variables are defined as in (5). We consider instances of this problem where all
parameters are drawn randomly as in our preceding experiments in the convex setting.

In Table 2, we compare the performance of DC3 and other deep learning-based methods against the
classical non-convex optimizer IPOPT.4 We find that DC3 achieves good objective values (8.02%
per-instance optimality gap), while maintaining feasibility. By contrast, all other deep learning-
based methods that we consider violate constraints significantly. DC3 also runs about 10⇥ faster
than IPOPT, even assuming IPOPT is fully parallelized. (Even on the CPU, DC3 takes 0.030 ±
0.000 seconds, about 4⇥ faster than IPOPT.) Note that the DC3 algorithm is essentially the same
between the convex QP and this non-convex task, since only the objective function is altered.

4.3 AC OPTIMAL POWER FLOW

We now show how DC3 can be applied to the problem of AC optimal power flow (ACOPF). ACOPF
is a fundamental problem for the operation of the electrical grid, and is used to determine how much
power must be produced by each generator on the grid in order to meet demand. As the amount of
renewable energy on the power grid grows, this problem must be solved more and more frequently to
account for the variability of these renewable sources, and at larger scale to account for an increasing
number of distributed devices (Rolnick et al., 2019). However, ACOPF is a non-convex optimization
problem and classical optimizers scale poorly on it. While specialized approaches to this problem
have started to emerge, including using machine learning (see, e.g., Zamzam & Baker (2019) for a
discussion), we here assess the ability of our more general framework to address this problem.

Formally, a power network may be considered as a graph on b nodes, representing different locations
(buses) within the electrical grid, and with edges weighted by complex numbers wij 2 C (admit-

tances) that represent how easily current can flow between the corresponding locations in the grid.
Let W 2 Cb⇥b denote the graph Laplacian (or nodal admittance matrix). Then, the problem of
ACOPF can be defined as follows: Given input variables pd 2 Rb, qd 2 Rb (representing real power

and reactive power demand at the various nodes of the graph), output the variables pg 2 Rb, qg 2 Rb

(representing real power and reactive power generation) and v 2 Cb (representing real and imagi-

nary voltage), according to the following optimization problem:

minimize
pg2Rb, qg2Rb, v2Cb

pTg Apg + bT pg

subject to pmin
g  pg  pmax

g

qmin
g  qg  qmax

g

vmin  |v|  vmax

(pg � pd) + (qg � qd)i = diag(v)Wv.

(7)

4We initialize the optimizer using the feasible point y = A+x noted in Equation (6).
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Obj. value Max eq. Mean eq. Max ineq. Mean ineq. Time (s)

Optimizer 3.81 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.949 (0.002)
DC3 3.82 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.089 (0.000)
DC3, 6= 3.67 (0.01) 0.14 (0.01) 0.02 (0.00) 0.00 (0.00) 0.00 (0.00) 0.040 (0.000)
DC3, 6 train 3.82 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.089 (0.000)
DC3, 6 train/test 3.82 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.00) 0.00 (0.00) 0.039 (0.000)
DC3, no soft loss 3.11 (0.05) 2.60 (0.35) 0.07 (0.00) 2.33 (0.33) 0.03 (0.01) 0.088 (0.000)
NN 3.69 (0.02) 0.19 (0.01) 0.03 (0.00) 0.00 (0.00) 0.00 (0.00) 0.001 (0.000)
NN,  test 3.69 (0.02) 0.16 (0.00) 0.02 (0.00) 0.00 (0.00) 0.00 (0.00) 0.040 (0.000)
Eq. NN 3.81 (0.00) 0.00 (0.00) 0.00 (0.00) 0.15 (0.01) 0.00 (0.00) 0.039 (0.000)
Eq. NN,  test 3.81 (0.00) 0.00 (0.00) 0.00 (0.00) 0.15 (0.01) 0.00 (0.00) 0.078 (0.000)

Table 3: Results on ACOPF over 100 test instances. We compare the performance of DC3 and
other algorithms according to the metrics described in Table 1. We find again that baseline methods
violate feasibility (as shown in red), while DC3 gives a feasible and near-optimal output about 10⇥
faster than the PYPOWER optimizer, even assuming that PYPOWER is fully parallelized.

More details about how we apply DC3 to the problem of ACOPF are given in Appendix C.

We assess our method on a 57-node power system test case available via the MATPOWER package.
We conduct 5 runs over 1,200 input datapoints (with a train/test/validation ratio of 10:1:1). As with
other tasks, hyperparameters for ACOPF were tuned to maximize performance for each method
individually (see Appendix B). Optimality, feasibility, and timing results are reported in Table 3.

We find that DC3 achieves comparable objective values to the optimizer, and preserves feasibility
with respect to both equality and inequality constraints. Once again, for every baseline deep learning
algorithm, feasibility is violated significantly for either equality or inequality constraints. Ablations
of DC3 also suffer from constraint violations, though the effect is less pronounced than for the con-
vex QP and simple non-convex settings, especially for ablation of the correction (perhaps because
the inequality constraints here are easier to satisfy than the equality constraints). We also see that
DC3 runs about 10⇥ faster than the PYPOWER optimizer, even when PYPOWER is fully parallelized.
(Even when running on the CPU, DC3 takes 0.906±0.003 seconds, slightly faster than PYPOWER.)

Out of 100 test instances, there were 3 on which DC3 output lower-than-optimal objective values of
up to a few percent (-0.30%, -1.85%, -5.51%), reflecting slight constraint violations. Over the other
97 instances, the per-instance optimality gap compared to the classical optimizer was 0.22%.

5 CONCLUSION

We have described a method, DC3, for fast approximate solutions to optimization problems with
hard constraints. Our approach includes a neural network that outputs a partial set of variables,
a differentiable completion procedure that fills in remaining variables according to equality con-
straints, and a differentiable correction procedure that fixes inequality violations. We find that DC3
yields solutions of significantly better feasibility and objective value than other approximate deep
learning-based solvers on convex and non-convex optimization tasks.

We note that, while DC3 provides a general framework for tackling constrained optimization, de-
pending on the setting, the expensiveness of both the completion and correction procedures may
vary (e.g., implicit solutions may be more time-consuming, or gradient descent may converge more
or less easily). We believe that, while our method as stated is broadly applicable, it will be possible
in future work to design further improvements tailored to specific problem instances, for example
by designing problem-dependent correction procedures.
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