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Overparameterized Models

Millions/Billions of parameters.

Can we reduce the size of these models without major drop in the
performance?
Pruning after Training: train, prune, repeat...
Very slow and requires excessive computational power.
Pruning at Initialization?

(ICLR 2021) University of Oxford 2 / 11



Neural Networks Pruning

Pruning: apply a binary mask δ to the weights. The pruned model is
given by

yl(x) = Fl(δl ◦W l, yl−1(x)) +Bl

Sensitivity based pruning (SNIP, Lee et al. 2018): prune the weights
at initialization based on |W ∂L

∂W |. Inspired from

LW ≈ LW =0 +W
∂L
∂W
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Ordered, Chaotic, and EOC Initializations

Assume W l
ij ∼ N (0, σ2

w/Nl−1), Bl
i ∼ N (0, σ2

b ).
• ql(x) = var(yl

1(x)) l→∞→ q

• Cl(x, x′) = corr(yl
1(x), yl

1(x′)) l→∞→ ??

Depending on the choice of (σb, σw):
Ordered phase where Cl(x, x′)→ 1 exponentially quickly [Schoenholz
et al., 2017]
Chaotic phase where Cl(x, x′)→ c < 1 exponentially quickly
[Schoenholz et al., 2017]
Edge of Chaos (EOC) where Cl(x, x′)→ 1 polynomial rate [Hayou
et al., 2019]
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Sensitivity Based Pruning (SBP)

• Critical sparsity: sparsity level scr such that one layer at least is fully
pruned. scr is random.

Proposition (Initialization is crucial for SBP, Informal)
Assume W l ∈ RN×N , and let L be the depth.

If (σb, σw) ∈ Ordered phase

E[scr] = O
(

log(LN2)
L

+ 1√
LN2

)

(σb, σw) ∈ EOC, then the upper bound no longer holds.

• On the Ordered phase, limL→∞ E[scr] = 0.
• Similar results can be proven for the Chaotic phase.
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Sensitivity Based Pruning (SBP)

Figure: Percentage of weights kept after SBP. 100x100 FFNN, s = 70%, Chaotic
phase(left), EOC(right).
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Training the Sparse Network

• After pruning, it might be difficult to train the sparse network...

• Putting the pruned network back on the EOC

yl(x) = ρlFl(δl ◦W l, yl−1(x)) +Bl
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Training the Sparse Architecture
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Training the Sparse Architecture

• Our algorithm SBP-SR yields SOTA (one shot pruning algorithms)
performance for Deep ResNets.

Table: Classification accuracies on Tiny ImageNet for Resnet with varying depths

algorithm 85% 90% 95%

ResNet32 SBP-SR 57.25 ± 0.09 55.67 ± 0.21 50.63±0.21
SNIP 56.92± 0.33 54.99±0.37 49.48±0.48

GraSP 57.25±0.11 55.53±0.11 51.34±0.29

ResNet50 SBP-SR 59.8±0.18 57.74±0.06 53.97±0.27
SNIP 58.91±0.23 56.15±0.31 51.19±0.47

GraSP 58.46±0.29 57.48±0.35 52.5±0.41

ResNet104 SBP-SR 62.84±0.13 61.96±0.11 57.9±0.31
SNIP 59.94±0.34 58.14±0.28 54.9±0.42

GraSP 61.1±0.41 60.14±0.38 56.36±0.51
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Paper

For more details, check our paper

Robust Pruning at Initialization. ICLR 2021. S. Hayou, J.F. Ton, A.
Doucet, Y.W. Teh.
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