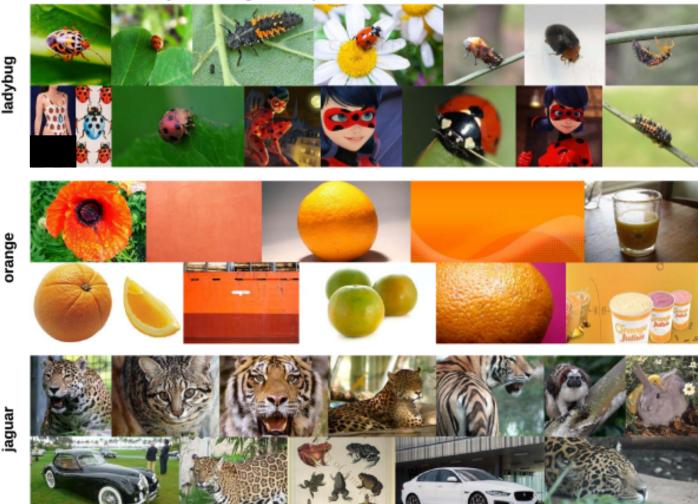

Robust Curriculum Learning: from clean-data detection to noisy-label self-correction

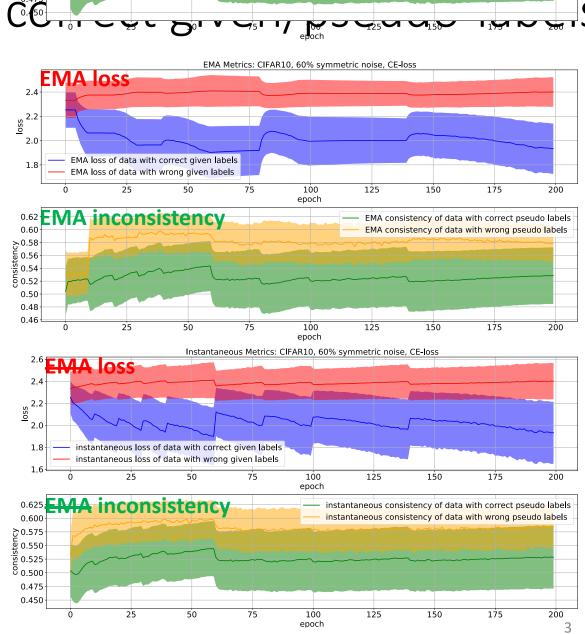
Tianyi Zhou*, Shengjie Wang*, Jeff A. Bilmes University of Washington, Seattle

ELECTRICAL & COMPUTER ENGINEERING


UNIVERSITY of WASHINGTON

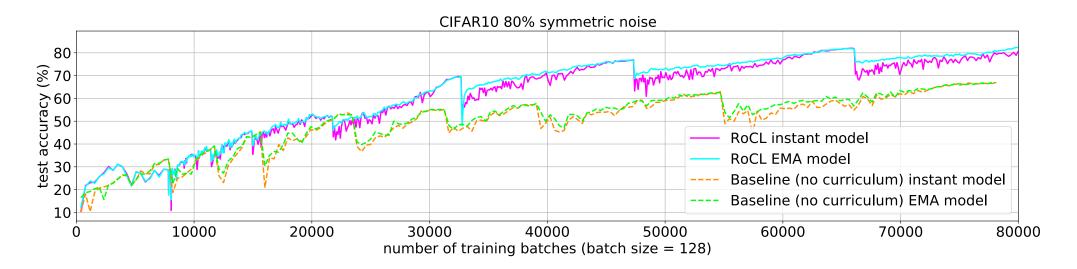
Two Main Challenges in Noisy-label Learning

- Noisy labels are not uncommon in data collected in practice, e.g., web-tags.
- Challenge 1: clean data detection + supervised learning.
- Challenge 2: noisy label correction (pseudo-labels) + self-supervised learning.


Noisy Training Examples in the Webvision Dataset

Training Dynamics identify

C 0.575 0.550 0.525


- Clean Data Detection
 - We use EMA (exponential moving average over time) loss to select data with correct given labels.
 - Supervised learning on them.
- Wrong-label Correction
 - We use **EMA inconsistency** of model output over time to select data with correct pseudo labels.
 - Self-supervised learning on them.
- EMA loss & EMA inconsistency work together to select:
 - Clean data with wrong pseudo labels
 - Noisy data with correct pseudo labels

EMA Metrics: CIFAR10, 60% symmetric noise, CE-loss

Robust Curriculum Learning (RoCL) [Zhou et al., ICLR 2021]

- Earlier: Supervised learning on data with correct given label but wrong pseudo-label [small EMA loss & large EMA time inconsistency]
- Later: Self-supervised learning on data with wrong given label but correct pseudo-label [large EMA loss & small EMA time inconsistency]

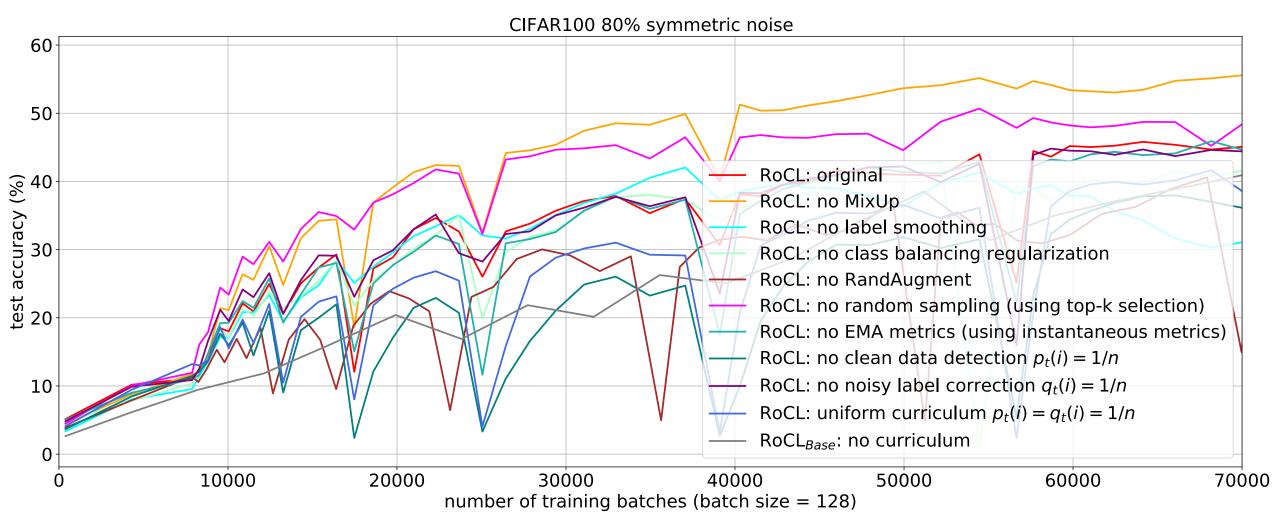
Robust Curriculum Learning (RoCL) [Zhou et al., ICLR 2021]

- Earlier: Supervised learning on data with correct given label but wrong pseudo-label [small EMA loss & large EMA time inconsistency]
- Later: Self-supervised learning on data with wrong given label but correct pseudo-label [large EMA loss & small EMA time inconsistency]
- Curriculum $\tau_1: \rightarrow +, \tau_2: + \rightarrow -, \lambda: 1 \rightarrow 0$

$$\min_{\theta} F(\theta) \triangleq \left(\frac{\lambda}{\tau_1} \log \left(\frac{1}{n} \sum_{i=1}^n \exp[\tau_1 \ell(f(x_i; \theta), y_i)] \right) + \frac{1}{\tau_1} \right)$$

Supervised loss: LogSumExp loss with temperature τ_1 and weight λ Self-supervised loss: LogSumExp consistency loss with temp τ_2 and weight $1 - \lambda$

 $\sum \exp[au_2 \zeta(i)]$


log

RoCL achieves SoTA on Noisy-Label Benchmarks

- **RoCL achieves state-of-the-art performance** on most benchmarks, including the ones with symmetric noises, asymmetric noises, and real-world web-label noises.
- RoCL significantly improves the robustness to noise, test accuracy and efficiency.

Table 1: Accuracy (%) evaluated on WebVision and ILSVRC2012 validation sets for DNNs trained by noisy-label learning methods on mini-WebVision training set (first 50 classes), which contains real-world web-label noises .			Dataset		CIFAR10		CIFAR100			
			Noise Rate	40%	60%	80%	40%	60%	80%	
			MD-DYR-SH	92.3	86.1	74.1	70.1	59.5	39.5	
			MentorNet	91.2	74.2	60.0	68.5	61.2	35.5	
Val. set We	oVision	ILSVR	C2012	MentorMix	94.2	91.3	81.0	71.3	64.6	41.2
A courses Top	1 Top 5	Top-1	Top 5	O2U-net	90.3	-	43.4	69.2	-	39.4
Accuracy Top-	1 10p-3	10p-1	10p-5	RoG+D2L	87.0	78.0	-	64.9	40.6	-
F-correct $^{+\star}$ 61.1	2 82.68	57.36	82.36	PENCIL	-	-	-	69.12 ± 0.62	57.79 ± 3.86	fail
Decoupling ** 62.5	4 84.74	58.26	82.26	GCE	87.62 ± 0.26	82.70 ± 0.23	67.92 ± 0.60	62.64 ± 0.33	54.04 ± 0.56	29.60 ± 0.51
Co-teaching * 63.5	8 85.20	61.48	84.70	SCE	85.34 ± 0.07	80.07 ± 0.02	53.81 ± 0.27	53.69 ± 0.07	41.47 ± 0.04	15.00 ± 0.04
MentorNet ** 63.0	0 81.40	57.80	79.92	NFL+MAE	83.81 ± 0.06	76.36 ± 0.31	45.23 ± 0.52	58.18 ± 0.08	46.10 ± 0.50	24.78 ± 0.82
MentorMix * [‡] * 76.0	0 90.20	72.90	91.10	NFL+RCE	86.05 ± 0.12	79.78 ± 0.13	55.06 ± 1.08	58.20 ± 0.31	46.30 ± 0.45	25.16 ± 0.55
D2L * 62.6	8 84.00	57.80	81.36	NCE+MAE	84.19 ± 0.43	77.61 ± 0.05	49.62 ± 0.72	59.22 ± 0.36	48.06 ± 0.34	25.50 ± 0.76
INCV * 65.2	4 85.34	61.60	84.98	NCE+RCE	86.02 ± 0.09	79.78 ± 0.50	52.71 ± 1.90	59.48 ± 0.56	47.12 ± 0.62	25.80 ± 1.12
RoCL (ours) [‡] * [†] ≀ 78.8	0 92.52	75.72	92.20	RoCL (ours) $^{\ddagger \star \dagger \wr}$	94.55 ± 0.12	92.98 ± 0.23	88.18 ± 0.26	74.64 ± 0.43	69.72 ± 0.58	58.72 ± 0.62

Ablation Study and Hyperparameters of RoCL

Ablation Study and Hyperparameters of RoCL

- The proposed curriculum brings the most improvements.
- Mix-Up is less necessary since mixing wrong and correct labels rarely happens in our curriculum.
- Data augmentation is important for accurate identification of correct given/pseudo-labels by EMA metrics.
- **Class-balance regularization** is only important under very high noise rates.

Table 5: Ablation study: Test accuracy (%) of RoCL variants with one part removed/changed when applied to CIFAR10/100 corrupted by symmetric(uniform) label noise.

Dataset	CIFA	AR10	CIFAR100		
Noise Rate	60%	80%	60%	80%	
RoCL: no MixUp	92.98	88.18	69.72	58.72	
RoCL: no LabelSmooth	91.94	85.05	62.92	42.95	
RoCL: no ClassBalance	93.08	74.91	62.66	43.94	
RoCL: no RandAugment	86.59	72.35	64.84	44.06	
RoCL: no RandSampling	92.31	85.99	64.09	57.00	
RoCL: no EMA metrics	92.84	87.79	65.99	53.10	
RoCL: $p_t(i) = 1/n$	92.42	86.05	62.69	44.35	
RoCL: $q_t(i) = 1/n$	92.59	86.93	64.71	50.79	
RoCL: $p_t(i) = q_t(i) = 1/n$	92.07	85.77	64.18	47.88	
RoCL _{Base} : no curriculum	87.83	66.93	61.84	41.92	
MentorMix: +RandAugment	85.45	20.68	52.70	8.02	
MentorMix: +RandAugment-MixUp	84.31	38.21	58.31	8.18	
MentorMix: original version	91.30	81.00	64.60	41.20	
RoCL: original version	92.82	88.00	66.79	54.22	

Thank you!

Poster Session 3: May 3rd (Monday) at 17:00-19:00 PDT

