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Background

– Traditional theory in optimization is worst-case analysis: Not
representative of typical behavior.

– Optimal average-case methods have recently been developed for
quadratic minimization problems [Berthier et al., 2020,
Pedregosa and Scieur, 2020, Lacotte and Pilanci, 2020].

– Optimal methods for smooth games only exist for the worst-case
analysis [Azizian et al., 2020].

– Gap: Average-case optimal methods for smooth games.
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Contributions of the paper

We combine average-case analysis with smooth games.

1. We develop novel average-case optimal algorithms for finding
the root of a linear system determined by a (potentially
non-symmetric) normal matrix.

2. We show that solving the Hamiltonian using an average-case
optimal method is optimal to find equilibria in bilinear games.
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Framework (1/2)

– For A ∈ Rd×d and x? ∈ Rd , we consider the non-symmetric
operator problem (NSO):

Find x : F (x)
def
= A(x− x?) = 0 .

– We define

dist(x , X ?)
def
= min

v∈X ?
‖x−v‖2, with X ? = {x ∈ Rd |A(x−x?) = 0} .
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Framework (2/2)
– First-order methods: For all t ≥ 0,

xt = x0 +
t∑

i=0

αt,iF (xi),

for some coefficients αt,i .

– For some random A, x? and initialization x0, average-case
first-order optimal algorithms solve:

min
xt first-order method

E(A,x?,x0)dist(xt , X ?)
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Sketch of the theory

– Residual polynomial : polynomial P that satisfies P(0) = 1.

– Known: if (xt) is the sequence generated by a first-order method, there exist
residual polynomials Pt of degree at most t such that xt − x? = Pt(A)(x0− x?).

– Empirical spectral distribution of A: µ̂A(λ) = 1
d

∑d
i=1δλi (λ), where (λi)

d
i=1 are

the eigenvalues of A. Expected spectral distribution: µA = EAµ̂A(λ).

– If A is a random normal matrix and x? are sampled appropriately, we show that
for any first order method with associated polynomials (Pt), we have
E[dist(xt ,X ?)] = R2

∫
C\{0} |Pt |2 dµA .

– For simple measures µ, we can compute the sequence of residual polynomials
that optimize

∫
C\{0} |Pt |2 dµA, and their corresponding first-order methods.
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Average-case optimal methods for bilinear games

We want to find a Nash equilibrium of the zero-sum minimax game
given by

min
θ1

max
θ2

`(θ1, θ2)
def
= (θ1 − θ?

1)>M(θ2 − θ?
2) .

where θ1,θ
?
1 ∈ Rd1,θ2,θ

?
2 ∈ Rd2,M ∈ Rd1×d2. Defining

A =

[
0 M
−M> 0

]
,

we recast the problem as solving the NSO F (x)
def
= A(x − x?) = 0.
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Example: M with i.i.d components
Setting: Each entry of M is sampled from iid from distribution with mean 0 and
variance σ2, in the regime d1, d2 →∞, d1/d2 = r .

Optimal average-case algorithm.

Initialization. x−1 = x0 =
(
θ1,0, θ2,0

)
.

Main loop. For t ≥ 0,

gt = F (xt − F (xt))− F (xt)
(
= 1

2
∇‖F (xt)‖2

)
xt+1 = xt − ht+1gt + mt+1(xt−1 − xt) where

ht = − δt
σ2
√
r
, mt = 1 + ρδt , ρ =

1 + r√
r
, δt = (−ρ− δt−1)−1, δ0 = 0.
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Example: M with i.i.d components
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Figure: First row: spectral density associated with bilinear games for varying values of the ratio
parameter r = n/d (the x-axis represents the imaginary line). Second row: Comparison of
gradient norm decay with benchmark. The largest gain is in the ill-conditioned regime (r ≈ 1). 9/12



Normal matrices with circular spectral distribution
Setting: Assume that the expected spectral distribution µA is the uniform
probability measure on the complex disk of center C ∈ R,C > 0 and radius
R < C .

Optimal average-case algorithm.

Initialization. y−1 = y0 = x0.
Main loop. For t ≥ 0,

yt = yt−1 − 1
C
F (yt−1), βt = (C

R
)2t(t + 1), Bt = Bt−1 + βt−1,

xt =
Bt

Bt + βt
xt−1 +

βt
Bt + βt

yt .

Moreover, E(A,x?,x0)dist(xt ,X ?) converges to zero at rate 1/Bt .
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Uniform circular spectral distribution
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Figure: Benchmarks (columns 1 and 3) and eigenvalue distribution of a design matrix
generated with iid entries for two different degrees of conditioning. Depite the normality
assumption not being satisfied, we still observe an improvement of average-case optimal
methods vs worst-case optimal ones.
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