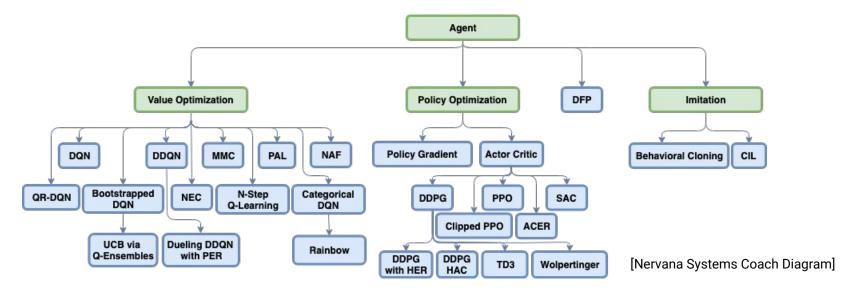
Evolving Reinforcement Learning Algorithms

JD Co-Reyes, Yingjie Miao, Daiyi Peng, Esteban Real, Sergey Levine, Quoc V. Le, Honglak Lee, Aleksandra Faust

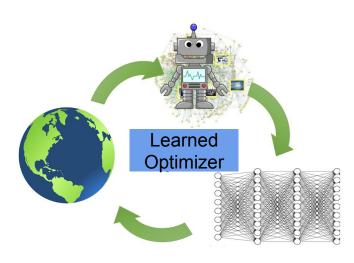
Wide Choice of RL Algorithms



Desire: General purpose RL algorithms without manual effort.

Problem: Can we meta-learn RL algorithms that generalize well on unseen tasks?

RL Algorithm as a Learned Optimizer



- Learning procedure which takes in MDP and transforms experience into optimal behavior
- Can we meta-learn the optimizer?
 - Improved performance
 - Generalize to unseen environments
 - Interpretable
 - Scale with data and compute

Example: Simple Modifications to Existing Algorithms

$$\delta^2 = (Q(s_t, a_t) - (r_t + \gamma * \max_{a} Q(s_{t+1}, a)))^2$$

[1] Kumar, A., Zhou, A., Tucker, G., & Levine, S. (2020). Conservative Q-Learning for Offline Reinforcement Learning. *ArXiv, abs/2006.04779*.

Example: Simple Modifications to Existing Algorithms

CQL: adds scaled log softmax policy to TD error

$$\delta^2 + \beta \log \sum_{a} \exp(Q(s_t, a)) - Q(s_t, a_t)$$

Example: Simple Modifications to Existing Algorithms

CQL: adds scaled log softmax policy to TD error

$$\delta^2 + \beta \log \sum_{a} \exp(Q(s_t, a)) - Q(s_t, a_t)$$

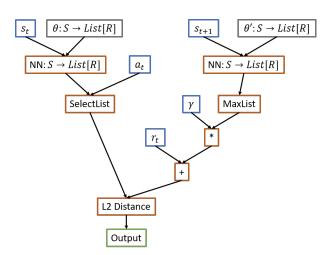
M-DQN: adds scaled log policy to reward

$$\hat{q}_{\text{m-dqn}}(r_t, s_{t+1}) = r_t + \alpha \tau \ln \pi_{\bar{\theta}}(a_t|s_t) + \gamma \sum_{a' \in \mathcal{A}} \pi_{\bar{\theta}}(a'|s_{t+1}) \Big(q_{\bar{\theta}}(s_{t+1}, a') - \tau \ln \pi_{\bar{\theta}}(a'|s_{t+1}) \Big)$$

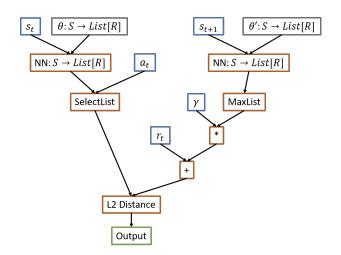
[1] Kumar, A., Zhou, A., Tucker, G., & Levine, S. (2020). Conservative Q-Learning for Offline Reinforcement Learning. *ArXiv, abs/2006.04779*.

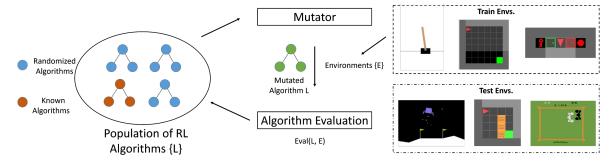
[2] Vieillard, N., Pietquin, O., & Geist, M. (2020). Munchausen Reinforcement Learning. ArXiv, abs/2007.14430.

• **Insight:** RL algorithm as a computational graph

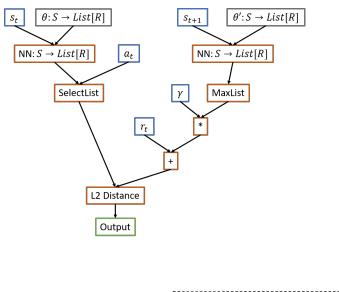


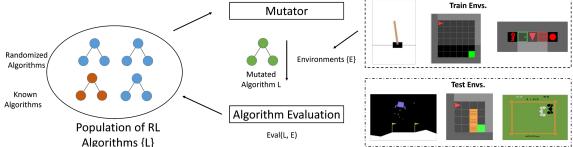
- Insight: RL algorithm as a computational graph
- Method: Evolve population of graphs by mutating, training, and evaluating RL agents





- Insight: RL algorithm as a computational graph
- Method: Evolve population of graphs by mutating, training, and evaluating RL agents
- Result: Learn new algorithms which generalize to unseen environments





Prior Work

Genetic Programming

- Holland 1975, Koza 1993, Schmidhuber 1987
- AutoML: Zoph & Le 2016, Hutter 2018, Real et al. 2020
- Mostly applied to SL

Meta-learning in RL

- Adaptation: Finn & Levine 2018
- RNNs: Duan et al. 2016, Wang et al. 2017
- Not domain agnostic

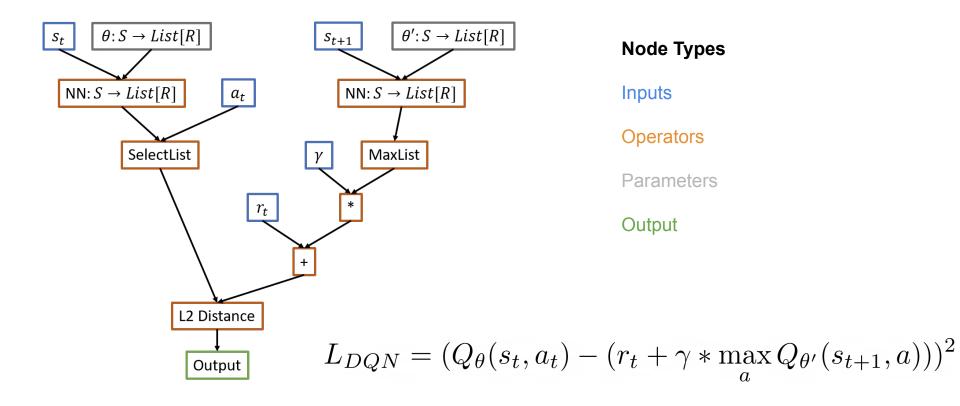
Learning RL Algorithms

- Metagradients: Kirsch et al. 2020, Oh et al. 2020
- Not interpretable
- Exploration: Alet et al. 2020

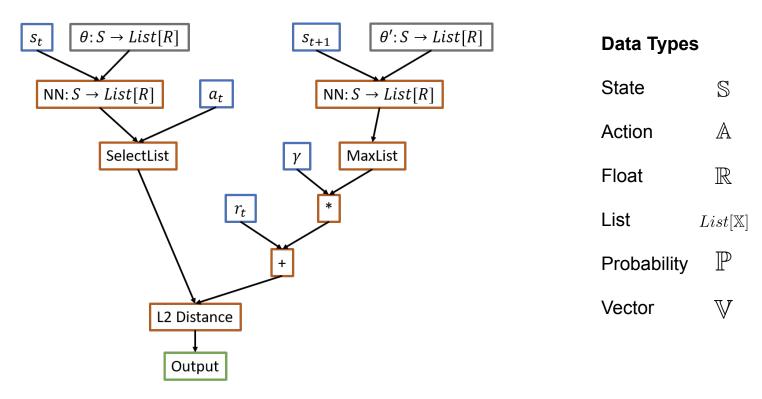
Algorithm Representation

Expressive Interpretable Generalizable

RL Algorithm as a Computational Graph

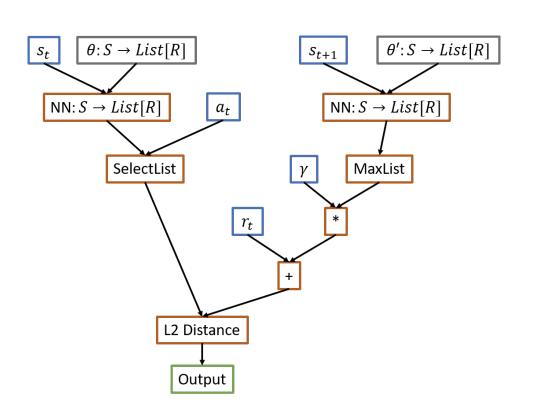


RL Algorithm as a Computational Graph



Typing allows for domain agnostic programs and type checking

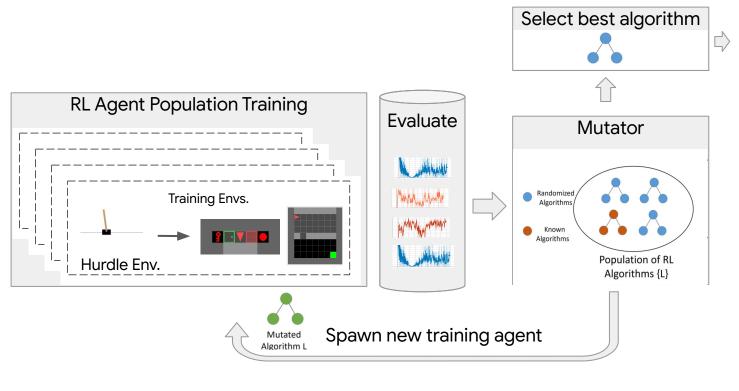
RL Algorithm as a Computational Graph

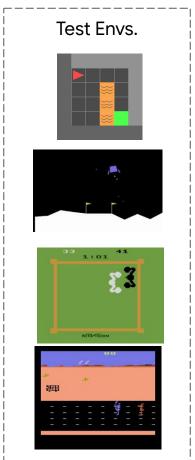


Operation	Input Types	Output Type
Add	X , X	X
Subtract	Ж, Ж	X
Max	Ж, Ж	X
Min	Ж, Ж	X
DotProduct	X, X	\mathbb{R}
Div	Ж, Ж	X
L2Distance	Ж, Ж	\mathbb{R}
MaxList	$List[\mathbb{R}]$	\mathbb{R}
MinList	$List[\mathbb{R}]$	\mathbb{R}
ArgMaxList	$List[\mathbb{R}]$	\mathbb{Z}
SelectList	List[X], Z	X
MeanList	List[X]	X
VarianceList	List[X]	X
Log	X	X
Exp	X	X
Abs	X	X
$(C)NN:\mathbb{S} \to List[\mathbb{R}]$	S	$List[\mathbb{R}]$
$(C)NN:\mathbb{S} \to \mathbb{R}$	S	\mathbb{R}
$(C)NN:\mathbb{S} \to \mathbb{V}$	V	\mathbb{V}
Softmax	$List[\mathbb{R}]$	\mathbb{P}
KLDiv	\mathbb{P}, \mathbb{P}	\mathbb{R}
Entropy	\mathbb{P}	\mathbb{R}
Constant		1, 0.5, 0.2, 0.1, 0.01
MultiplyTenth	X	X
Normal(0, 1)		\mathbb{R}
Uniform(0, 1)		\mathbb{R}

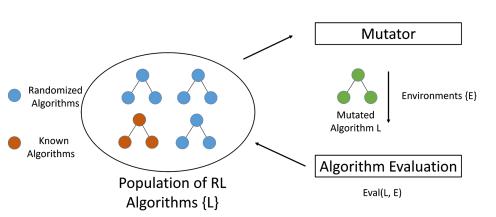
Outer loop Optimization

How to scale with compute?





Meta-Learn RL Algorithms

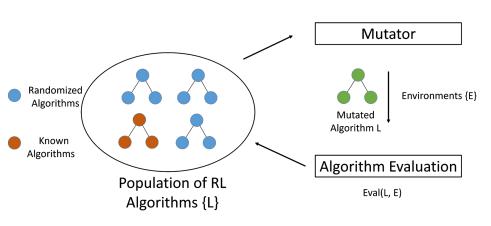


Algorithm 1 Algorithm Evaluation, $Eval(L, \mathcal{E})$

```
1: Input: RL Algorithm L, Environment \mathcal{E}, training episodes M
 2: Initialize: Q-value parameters \theta, target parameters \theta' empty replay
     buffer \mathcal{D}
 3: for i=1 to M do
          for t = 0 to T do
               With probability \epsilon, select a random action a_t,
               otherwise select a_t = \arg \max_a Q(s_t, a)
               Step environment s_{t+1}, r_t \sim \mathcal{E}(a_t, s_t)
               \mathcal{D} \leftarrow \mathcal{D} \cup \{s_t, a_t, r_t, s_{t+1}\}
               Update parameters \theta \leftarrow \theta - \nabla_{\theta} L(s_t, a_t, r_t, s_{t+1}, \theta, \gamma)
               Update target \theta' \leftarrow \theta
10:
11:
          end for
          Compute episode return R_m = \sum_{t=0}^{T} r_t
13: end for
14: Output:
        Normalized training performance \frac{1}{M} \sum_{m=1}^{M} \frac{R_m - R_{min}}{R_{max} - R_{min}}
```

- Learn loss function for DQN style update procedure
- Score each algorithm with normalized training performance

Meta-Learn RL Algorithms



Algorithm 2 Evolving RL Algorithms

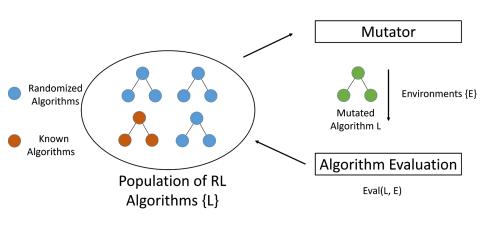
- 1: **Input:** Training environments $\{\mathcal{E}\}$, hurdle environment \mathcal{E}_h , hurdle threshold α , optional existing algorithm A
- 2: **Initialize:** Population P of RL algorithms $\{L\}$, history H, randomized inputs I. If bootstrapping, initialize P with A.

```
3: Score each L in P with H[L].score \leftarrow \sum_{\mathcal{E}} \text{Eval}(L, \mathcal{E})
```

- 4: **for** c = 0 **to** C **do**
- 5: Sample tournament $T \sim Uniform(P)$
- 6: Parent algorithm $L \leftarrow$ highest score algorithm in T
- 7: Child algorithm $L' \leftarrow Mutate(L)$
- 8: $H[L'].hash \leftarrow \text{Hash}(L'(I))$
- 9: **if** H[L'].hash was new **and** $Eval(L', \mathcal{E}_h) > \alpha$ **then**
- 10: $H[L'].score \leftarrow \sum_{\mathcal{E}} \text{Eval}(L', \mathcal{E})$
- 11: **end if**
- 12: Add L' to population P
- 13: Remove oldest L from population
- 14: **end for**
- 15: Output: Algorithm L with highest score

Regularized Evolution for outer loop optimization

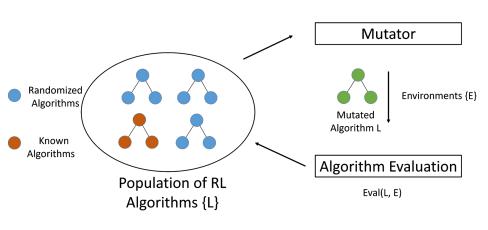
Optimizations



Algorithm 2 Evolving RL Algorithms

- 1: **Input:** Training environments $\{\mathcal{E}\}$, hurdle environment \mathcal{E}_h , hurdle threshold α , optional existing algorithm A
- 2: **Initialize:** Population P of RL algorithms $\{L\}$, history H, randomized inputs I. If bootstrapping, initialize P with A.
- 3: Score each L in P with $H[L].score \leftarrow \sum_{\mathcal{E}} \text{Eval}(L, \mathcal{E})$
- 4: for c = 0 to C do
- 5: Sample tournament $T \sim Uniform(P)$
- 6: Parent algorithm $L \leftarrow$ highest score algorithm in T
- 7: Child algorithm $L' \leftarrow Mutate(L)$
- 8: $H[L'].hash \leftarrow \text{Hash}(L'(I))$
- 9: **if** H[L'].hash was new **and** $Eval(L', \mathcal{E}_h) > \alpha$ **then**
- 10: $H[L'].score \leftarrow \sum_{\mathcal{E}} \text{Eval}(L', \mathcal{E})$
- 11: **end if**
- 12: Add L' to population P
- 13: Remove oldest L from population
- 14: end for
- 15: **Output:** Algorithm L with highest score
- Don't reevaluate functionally equivalent or duplicate programs
- Saves 70% of computation

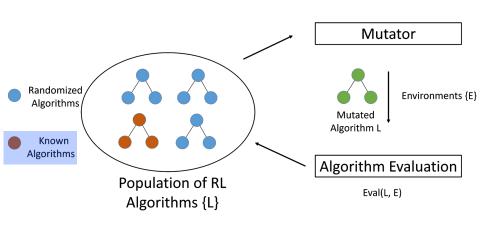
Optimizations



Algorithm 2 Evolving RL Algorithms

- 1: **Input:** Training environments $\{\mathcal{E}\}$, hurdle environment \mathcal{E}_h , hurdle threshold α , optional existing algorithm A
- 2: **Initialize:** Population P of RL algorithms $\{L\}$, history H, randomized inputs I. If bootstrapping, initialize P with A.
- 3: Score each L in P with $H[L].score \leftarrow \sum_{\mathcal{E}} \text{Eval}(L, \mathcal{E})$
- 4: for c = 0 to C do
- 5: Sample tournament $T \sim Uniform(P)$
- 6: Parent algorithm $L \leftarrow$ highest score algorithm in T
- 7: Child algorithm $L' \leftarrow \text{Mutate}(L)$
- 8: $H[L'].hash \leftarrow \text{Hash}(L'(I))$
- 9: if H[L'].hash was new and $Eval(L', \mathcal{E}_h) > \alpha$ then
- 10: $H[L'].score \leftarrow \sum_{\mathcal{E}} \text{Eval}(L', \mathcal{E})$
- 11: **end if**
- 12: Add L' to population P
- 13: Remove oldest L from population
- 14: end for
- 15: **Output:** Algorithm L with highest score
- Stop early if performance on hurdle environment is bad
- Saves additional 30% of computation

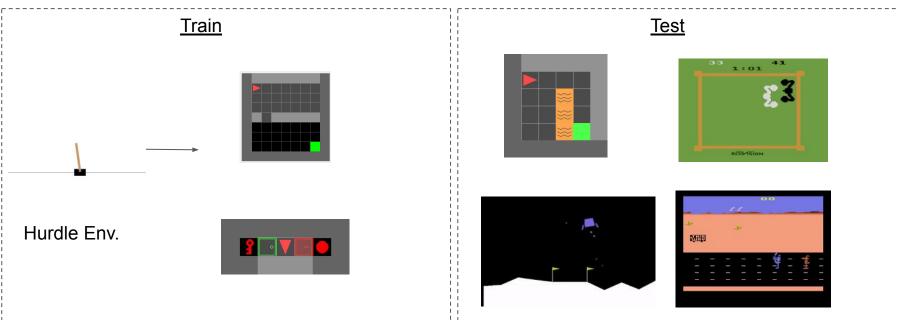
Bootstrap from existing algorithms



Algorithm 2 Evolving RL Algorithms

- 1: **Input:** Training environments $\{\mathcal{E}\}$, hurdle environment \mathcal{E}_h , hurdle threshold α , optional existing algorithm A
- 2: **Initialize:** Population P of RL algorithms $\{L\}$, history H, randomized inputs I. If bootstrapping, initialize P with A.
- 3: Score each L in P with $H[L].score \leftarrow \sum_{\mathcal{E}} \text{Eval}(L, \mathcal{E})$
- 4: for c = 0 to C do
- 5: Sample tournament $T \sim Uniform(P)$
- 6: Parent algorithm $L \leftarrow$ highest score algorithm in T
- 7: Child algorithm $L' \leftarrow \text{Mutate}(L)$
- 8: $H[L'].hash \leftarrow \text{Hash}(L'(I))$
- 9: **if** H[L'].hash was new **and** $Eval(L', \mathcal{E}_h) > \alpha$ **then**
- 10: $H[L'].score \leftarrow \sum_{\mathcal{E}} \text{Eval}(L', \mathcal{E})$
- 11: **end if**
- 12: Add L' to population P
- 13: Remove oldest L from population
- 14: end for
- 15: Output: Algorithm L with highest score
- Can initialize population with existing algorithms

Environments



- Want training environments that are computationally cheap but diverse
- Test environments include completely different state and action sizes (including image observations)

Results

Learned Algorithm 1: DQN_Clipped as Constrained Optimization

$$Y_t = r_t + \gamma * \max_{a} Q_{targ}(s_t, a), \text{ and } \delta = Q(s_t, a_t) - Y_t.$$

$$L_{\text{DQNClipped}} = \max \left[Q(s_t, a_t), \delta^2 + Y_t \right] + \max \left[Q(s_t, a_t) - Y_t, \gamma(\max_a Q_{targ}(s_t, a))^2 \right]$$

Learned Algorithm 1: DQN_Clipped as Constrained Optimization

$$Y_t = r_t + \gamma * \max_a Q_{targ}(s_t, a), \text{ and } \delta = Q(s_t, a_t) - Y_t.$$

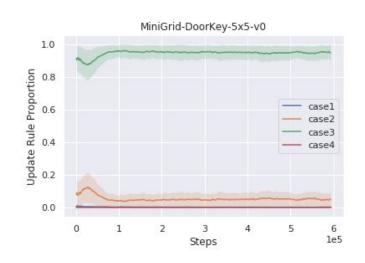
$$L_{\text{DQNClipped}} = \max \left[Q(s_t, a_t), \delta^2 + Y_t \right] + \max \left[Q(s_t, a_t) - Y_t, \gamma(\max_a Q_{targ}(s_t, a))^2 \right]$$

Case 2:
$$Q(s_t, a_t) - Y_t > \delta^2$$

Minimize Q

Case 3:
$$Q(s_t, a_t) - Y_t \leq \delta^2$$

Minimize normal TD error



Learned Algorithm 1: DQN_Clipped as Constrained Optimization

$$Y_t = r_t + \gamma * \max_a Q_{targ}(s_t, a), \text{ and } \delta = Q(s_t, a_t) - Y_t.$$

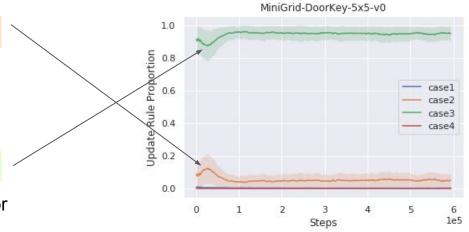
$$L_{\text{DQNClipped}} = \max \left[Q(s_t, a_t), \delta^2 + Y_t \right] + \max \left[Q(s_t, a_t) - Y_t, \gamma(\max_a Q_{targ}(s_t, a))^2 \right]$$

Case 2: $Q(s_t, a_t) - Y_t > \delta^2$

Minimize Q

Case 3:
$$Q(s_t, a_t) - Y_t \leq \delta^2$$

Minimize normal TD error



Learned Algorithm 2: DQN_Reg as Soft Constraint

$$Y_t = r_t + \gamma * \max_a Q_{targ}(s_t, a), \text{ and } \delta = Q(s_t, a_t) - Y_t.$$

$$L_{\text{DQNReg}} = 0.1 * Q(s_t, a_t) + \delta^2$$

Learned Algorithm 2: DQN_Reg as Soft Constraint

$$Y_t = r_t + \gamma * \max_a Q_{targ}(s_t, a)$$
, and $\delta = Q(s_t, a_t) - Y_t$.

$$L_{\text{DQNReg}} = 0.1 * Q(s_t, a_t) + \delta^2$$

$$L_{CQL} = \beta \log \sum_{a} \exp (Q(s_t, a)) - Q(s_t, a_t) + \delta^2$$

Learned Algorithm 2: DQN_Reg as Soft Constraint

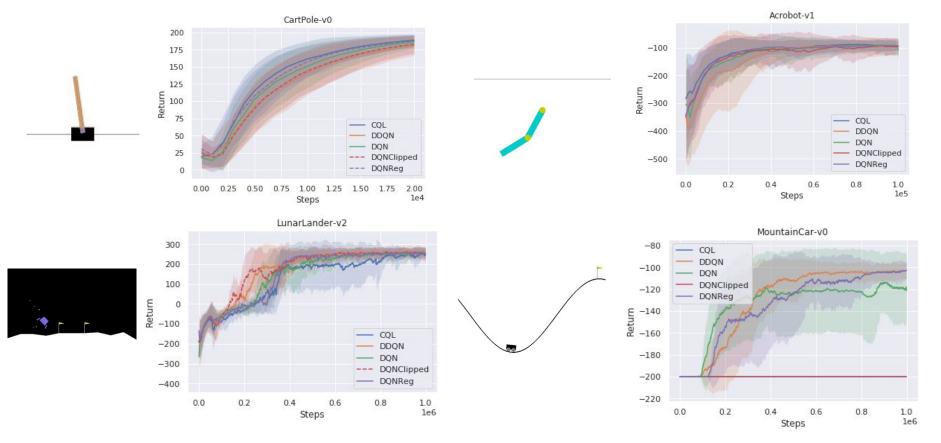
$$Y_t = r_t + \gamma * \max_a Q_{targ}(s_t, a)$$
, and $\delta = Q(s_t, a_t) - Y_t$.

$$L_{\text{DQNReg}} = 0.1 * Q(s_t, a_t) + \delta^2$$

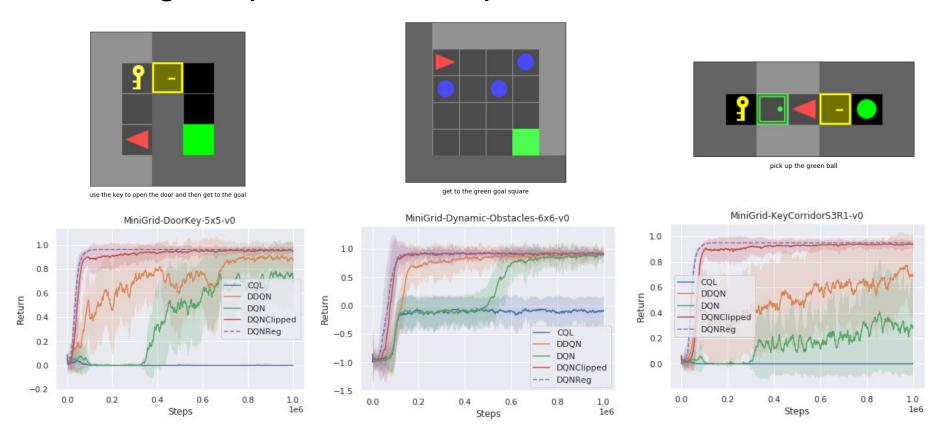
$$L_{CQL} = \beta \log \sum_{a} \exp (Q(s_t, a)) - Q(s_t, a_t) + \delta^2$$

 DQNReg as version of entropy regularization that penalizes Q-values on dataset to prevent overfitting

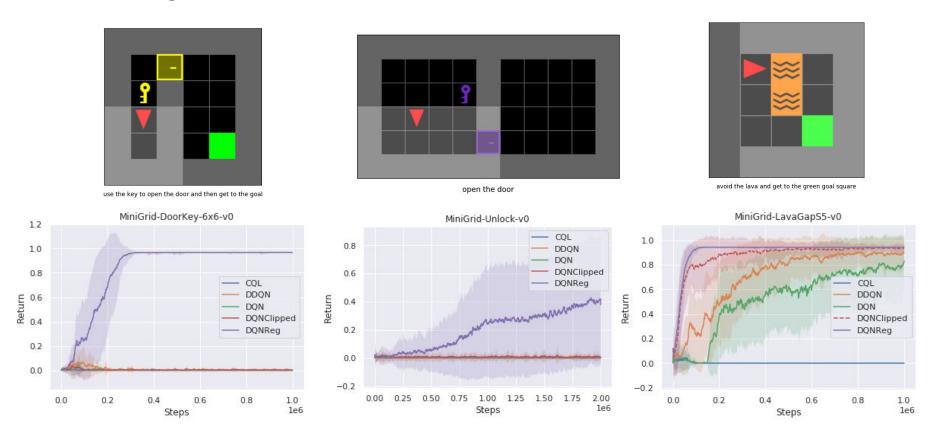
Generalize to Unseen Environments



DQNReg Outperforms on Sparse Reward Train Envs.

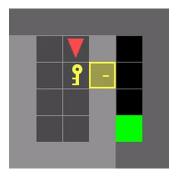


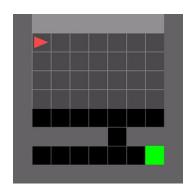
DQNReg Generalizes to Sparse Reward Test Envs.

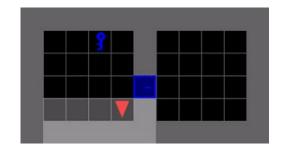


Generalize to Unseen Environments

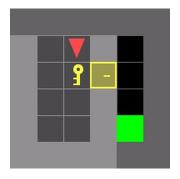
DQN

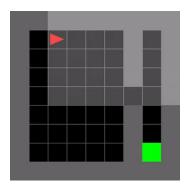


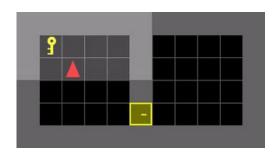




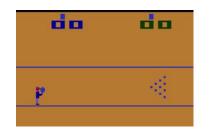
DQNReg

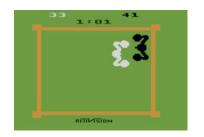






Atari Performance



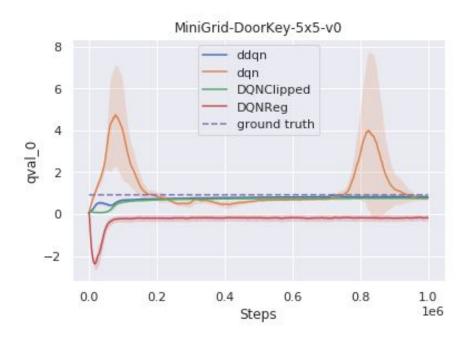


Env	DQN	DDQN	PPO	DQNReg
Asteroid	1364.5	734.7	2097.5	2390.4
Bowling	50.4	68.1	40.1	80.5
Boxing	88.0	91.6	94.6	100.0
RoadRunner	39544.0	44127.0	35466.0	65516.0

Baselines taken from reported numbers.

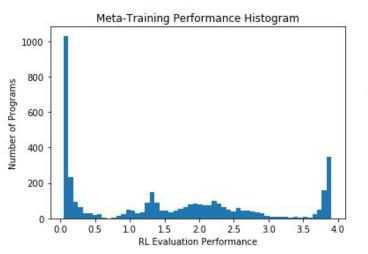
Learned algorithm (DQNReg) generalizes to Atari games when meta-training was on non-image based environments. Not tuned to Atari games.

DQNReg



DQN overestimates Q values while learned algorithms DQNClipped and DQNReg overcome this issue and underestimate Q values

Learning Convergence



Raw Equation	Simplified Equation	Score	Rank
$\delta^2 + 0.1 * Q(s_t, a_t) + r_t - (\gamma * Q_{targ} - 0.1 * Q(s_t, a_t))$	$\delta^2 + 0.2 * Q(s_t, a_t)$	3.903	2
$\delta^2 + 0.1 * Q(s_t, a_t) - \gamma + Q_{targ}$	$\delta^2 + 0.1 * Q(s_t, a_t)$	3.902	3
$\delta^{2} + ((r_{t} + \gamma * Q_{targ} + Q(s_{t}, a_{t})) * (\gamma - \max(\gamma, 0.1 * Q(s_{t}, a_{t})) $ $-\gamma * Q_{targ} - 0.1 * Q(s_{t}, a_{t}))$	NA	3.846	11140
$\delta^2 + (\delta^2 + 0.1 * Q(s_t, a_t))^2$	NA	3.65	12140
$\delta^2 + Q(s_t, a_t)$	$\delta^2 + Q(s_t, a_t)$	2.8	12446
δ^2	δ^2	2.28	1324

Top performing algorithms have similar structure

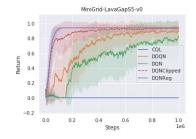
With different training environments or initialization, could find other families of models with better performance

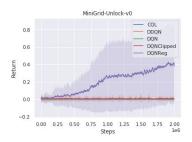
Conclusion

RL algorithm as a computational graph

Evolve new RL algorithms

 Learned algorithms generalize to unseen environments





Env	DQN	DDQN	PPO	DQNReg
Asteroid	1364.5	734.7	2097.5	2390.4
Bowling	50.4	68.1	40.1	80.5
Boxing	88.0	91.6	94.6	100.0
RoadRunner	39544.0	44127.0	35466.0	65516.0

Discussion

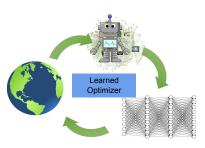
 Incorporate learned modifications into existing algorithms



Discussion

 Incorporate learned modifications into existing algorithms

Machine assisted algorithm development



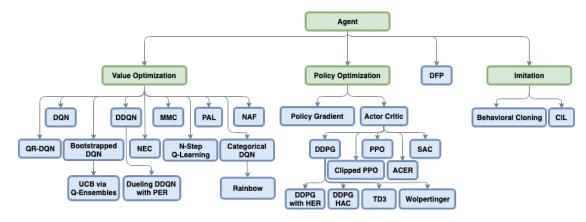
Discussion

 Incorporate learned modifications into existing algorithms

 Machine assisted algorithm development

 Extend to other families: actor critic, offline RL





Thank you to collaborators!

JD Co-Reyes

Yingjie Miao

Daiyi Peng

Esteban Real

Honglak Lee

Aleksandra Faust

Questions?

