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Wasserstein Distance
Wasserstein distance is a metric between two probability measures that follows Kantorovich 
formulation of Optimal Transport:

                                    which is defined on a given metric space
                        is a set of all transportation plans     such that the marginal distributions are 

Pros:
         Meaningful metric

         Able to work with empirical measures

         Stable and versatile

Cons: 
         Suffer from the curse of dimensionality

         High computational complexity
                            with      is the number of
          supports of         when they are
          empirical measures



Slicing with Radon Transform
Radon Transform maps a function                        to a set to the space of functions defined over space 
of lines. For                    and                  , the Radon Transform is defined as:

               is the Dirac delta function
                       is the inner product 
               is called projecting direction

         With each value of    , Radon Transform gives a 1-d function on the real line.

         Radon Transform is injective 

         Radon Transform can be extended to Generalized Radon Transform



Sliced Wasserstein Distance
Sliced Wasserstein distance is a variant that leverages the closed-form advantage of Wasserstein 
distance in 1D by using slicing technique

                            is the uniform distribution on the hypersphere of       dimension
                  is the cumulative distribution function of       

Since the expectation is intractable, Monte Carlo scheme is used

           L is the number of projections, 
When            are empirical measures with      support points,  each 1D Wasserstein can be solved at time 
of                         by sorting projected supports, and
                        SW does not suffer from the curse of dimensionality



Max Sliced Wasserstein Distance
Max sliced Wasserstein distance is a variant of sliced Wasserstein that tries to find the “best” 
projecting direction on the unit hypersphere:

           Still is a metric between probability measures
           Require optimization over the unit-sphere to compute  

          Low sample-projections complexity

          Can find the best discriminative projection

          No curse of dimensionality



Distributional Sliced Wasserstein Distance
We generalize the idea of slicing by using a generic distribution over the space of projecting directions 
(the unit hypersphere)

                  is an arbitrary distribution over sphere
           

Which       is good? We need to guarantee      putting masses to informative directions

                           Is the space of all distributions over the unit-hypersphere
                  
            This formulation will gives                    which is the Dirac distribution on the max slice.



Distributional Sliced Wasserstein Distance

The final definition of distributional sliced Wasserstein distance (DSW):  

                            
           

           Need a regularization to avoiding collapsing.
Let         are two vectors on the unit-hypersphere 

                    measures the “positive” angle between two vectors
 The regularization:                          
                  
                              



Distributional Sliced Wasserstein Distance

DSW is:
            A valid metric between two probability measures since it satisfies non-negativity, symmetry, 
triangle inequality and identity. 
            The generalization of max-SW (             )
                   
             A sliced distance that does not suffer from the curse of dimensionality since

                        is supported on a compact subset in      ,        is the n-supports empirical measure of 
                                 is some universal constant
       

            If                 ,
                             
           The convergence of probability measures under DSW implies the convergence of these 
measures under max-SW, Wasserstein distance and vice versa



Computation of DSW
Dual form of DSW:

                 is the Lagrange multiplier
           Each value of       has a corresponding optimal 
           

Let                              be a Borel measurable function

                a class of all Borel measurable functions from           to  
                    
            We can limit the function space by parametrizing      with some parameters      (e.g. a neural net)



Computation of DSW
To solve the optimization problem, we use stochastic gradient estimation 

           
                                                 ; L is called the number of projections

After finding the optimal         , we can approximate the value of DSW by: 

                
               L is called the number of projections   
            



Experiments

Approximate the distribution over directions by 1000 samples
                   
      When               , all samples are the “max” direction

      When        is large enough, “best” orthogonal directions are found



Experiments

Generative model with minimum expected distance estimator:

              is the parameter space 
                                    is the empirical data distribution
                                    is the empirical distribution that obtained by i.i.d sampling from
           which is often          (e.g.                         and       is a neural net)

       In practice, we set 

        The neural net architecture is chosen based on the dataset



Experiments



Experiments



Summary
                                               

        Introducing a new distance between probability measures - distributional sliced Wasserstein

    
        Theoretical analysis (metricity, connections to existing sliced optimal transport  distances, curse of 
dimensionality)

        Extensions with non-linear projecting 

        Experimental results on generative modeling task to show the favorable performance of the new 
distance
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