Distributional Sliced-Wasserstein and Applications to Generative Modeling

Khai Nguyen¹, Nhat Ho², Tung Pham¹, Hung Bui¹

¹VinAI Research, Vietnam

²University of Texas, Austin

The University of Texas at Austin

Wasserstein Distance

Wasserstein distance is a metric between two probability measures that follows Kantorovich formulation of Optimal Transport:

$$W_p(\mu,
u):= \Big(\inf_{\pi\in\Pi(\mu,
u)}\int_{\mathcal{X} imes\mathcal{Y}}\|x-y\|^pd\pi(x,y)\Big)^rac{1}{p}$$

μ, ν ∈ P_p(ℝ^d) which is defined on a given metric space (ℝ^d, ||. ||)
 Π(μ, ν) is a set of all transportation plans π such that the marginal distributions are μ, ν

Pros:

- Meaningful metric
- Able to work with empirical measures
- Stable and versatile

Cons:

- Suffer from the curse of dimensionality
- High computational complexity $\mathcal{O}(n^3 \log n)$ with n is the number of supports of μ, ν when they are empirical measures

Slicing with Radon Transform

Radon Transform maps a function $I \in L^1(\mathbb{R}^d)$ to a set to the space of functions defined over space of lines. For $\theta \in \mathbb{S}^{d-1}$ and $t \in \mathbb{R}$, the Radon Transform is defined as:

$$\mathcal{R}I(t, heta):=\int_{\mathbb{R}^d} I(x)\delta(t-\langle x, heta
angle)dx.$$

δ is the Dirac delta function
⟨.,.⟩ is the inner product
θ is called projecting direction

With each value of θ , Radon Transform gives a 1-d function on the real line.

Radon Transform is injective

Radon Transform can be extended to Generalized Radon Transform

Sliced Wasserstein Distance

Sliced Wasserstein distance is a variant that leverages the closed-form advantage of Wasserstein distance in 1D by using slicing technique

$$SW_p(\mu,
u):=(\mathbb{E}_{ heta\sim\mathcal{U}(\mathbb{S}^{d-1})}[W_p^pig(\mathcal{R}I_\mu(\cdot, heta),\mathcal{R}I_
u(\cdot, heta)ig)])^{1/p}$$

U(S^{d-1}) is the uniform distribution on the hypersphere of *d* dimension
 *I*_μ is the cumulative distribution function of *μ*

Since the expectation is intractable, Monte Carlo scheme is used

$$SW_p(\mu,
u)pprox (rac{1}{L}\sum_{l=1}^L W_p^pig(\mathcal{R}I_\mu(\cdot, heta_l),\mathcal{R}I_
u(\cdot, heta_l)ig))^{1/p}$$

• L is the number of projections, $\{\theta\}_{i=1}^{L} \sim \mathcal{U}(\mathbb{S}^{d-1})$ When μ, ν are empirical measures with n support points, each 1D Wasserstein can be solved at time of $\mathcal{O}(Ln \log n)$ by sorting projected supports, and

SW does not suffer from the curse of dimensionality

Max Sliced Wasserstein Distance

Max sliced Wasserstein distance is a variant of sliced Wasserstein that tries to find the "best" projecting direction on the unit hypersphere:

$$\max\text{-}SW_p(\mu,\nu):= \max_{\theta\in\mathbb{S}^{d-1}} W_p\big(\mathcal{R}I_\mu(\cdot,\theta),\mathcal{R}I_\nu(\cdot,\theta)\big)$$

Still is a metric between probability measures
Require optimization over the unit-sphere to compute

Low sample-projections complexity

- Can find the best discriminative projection
- No curse of dimensionality

Distributional Sliced Wasserstein Distance

We generalize the idea of slicing by using a **generic distribution** over the space of projecting directions (the unit hypersphere)

$$D_p(\mu,
u):=(\mathbb{E}_{ heta\sim\sigma}[W^p_pig(\mathcal{R}I_\mu(\cdot, heta),\mathcal{R}I_
u(\cdot, heta)ig)])^{1/p}$$

 σ is an arbitrary distribution over sphere

Which σ is good? We need to guarantee σ putting masses to informative directions

$$D_p(\mu,
u):= \sup_{\sigma\in\mathcal{P}(\mathbb{S}^{d-1})}(\mathbb{E}_{ heta\sim\sigma}[W^p_pig(\mathcal{R}I_\mu(\cdot, heta),\mathcal{R}I_
u(\cdot, heta)ig)])^{1/p}$$

• $\mathcal{P}(\mathbb{S}^{d-1})$ Is the space of all distributions over the unit-hypersphere

 \Rightarrow This formulation will gives $\sigma o \delta_{ heta^*}$ which is the Dirac distribution on the max slice.

Distributional Sliced Wasserstein Distance

Need a **regularization** to avoiding collapsing. Let θ, θ' are two vectors on the unit-hypersphere $\mathbb{S}^{d-1} := \{\theta \in \mathbb{R}^d; ||\theta||_2^2 = 1\}$

 $|\theta^{\top}\theta'|$ measures the "positive" angle between two vectors The regularization:

$$\mathbb{E}_{ heta, heta'\sim\sigma}[| heta^ op heta'|]\leq C$$

The final definition of **distributional sliced Wasserstein distance** (DSW):

$$egin{aligned} DSW_p(\mu,
u;C) := \sup_{\sigma\in \mathbb{M}_{m{C}}} ig(\mathbb{E}_{m{ heta}\sim\sigma}[W_p^pig(\mathcal{R}I_\mu(\cdot, heta),\mathcal{R}I_
u(\cdot, heta)ig)])^{1/p} \ &\mathbb{M}_C := \{\sigma\in\mathcal{P}(\mathbb{S}^{d-1})|\mathbb{E}_{ heta, heta'\sim\sigma}[| heta^ op heta'|\leq C]\} \end{aligned}$$

Distributional Sliced Wasserstein Distance

DSW is:

• A valid metric between two probability measures since it satisfies non-negativity, symmetry, triangle inequality and identity.

• The generalization of max-SW (C = 1)

• A sliced distance that does not suffer from the curse of dimensionality since $\mathbb{E}\left[DSW_p\left(\mu_n,\mu;C\right)\right] \le c\sqrt{\frac{d\log n}{n}}$

μ is supported on a compact subset in R^d, μ_n is the n-supports empirical measure of μ
 c > 0 is some universal constant

- $ullet \quad DSW_p(\mu,
 u;C) \leq \max SW_p(\mu,
 u) \leq W_p(\mu,
 u)$
- $\bullet \quad \text{If} \ C \geq 1/d \ , \ DSW_p(\mu,\nu;C) \geq \left(\tfrac{1}{d} \right)^{1/p} \max SW_p(\mu,\nu) \geq \left(\tfrac{1}{d} \right)^{1/p} SW_p(\mu,\nu)$

The convergence of probability measures under DSW implies the convergence of these measures under max-SW, Wasserstein distance and vice versa

Computation of DSW

Dual form of DSW:

$$DSW_p^*(\mu,
u;C):= \sup_{\sigma\in \mathcal{P}(\mathbb{S}^{d-1})} \left((\mathbb{E}_{ heta\sim\sigma}[W_p^p\left(\mathcal{R}I_\mu(\cdot, heta),\mathcal{R}I_
u(\cdot, heta)
ight)])^{1/p} \ -\lambda_C \mathbb{E}_{ heta, heta'\sim\sigma}[| heta^ op heta'|] + \lambda_C C
ight)$$

λ_C is the Lagrange multiplier
 Each value of C has a corresponding optimal λ_C
 λ_C > 0 () C > 1 () DSW

$$\quad \bullet \ \lambda_C \to 0 \leftrightarrow C \to 1 \leftrightarrow DSW \to {\sf max}\text{-}SW$$

Let $f: \mathbb{S}^{d-1} \to \mathbb{S}^{d-1}$ be a Borel measurable function $DSW_p^*(\mu, \nu; C) := \sup_{f \in \mathcal{F}} \left((\mathbb{E}_{\theta \sim \mathcal{U}(\mathbb{S}^{d-1})} [W_p^p(\mathcal{R}I_\mu(\cdot, f(\theta)), \mathcal{R}I_\nu(\cdot, f(\theta)))])^{1/p} -\lambda_C \mathbb{E}_{\theta, \theta' \sim \sigma}[|f(\theta)^\top f(\theta')|] + \lambda_C C \right)$ • \mathcal{F} a class of all Borel measurable functions from \mathbb{S}^{d-1} to \mathbb{S}^{d-1}

We can limit the function space by parametrizing f with some parameters ϕ (e.g. a neural net)

Computation of DSW

To solve the optimization problem, we use stochastic gradient estimation $\nabla_{\phi} DSW_p^*(\mu,\nu;C) \approx \nabla_{\phi} \left(\left(\sum_{l=1}^{L} [W_p^p(\mathcal{R}I_{\mu}(\cdot, f_{\phi}(\theta_l)), \mathcal{R}I_{\nu}(\cdot, f_{\phi}(\theta_l))] \right)^{1/p} \right)^{1/p}$

 $-\lambda_C \sum_{l=1}^L \sum_{l'}^L [|f_{\phi}(oldsymbol{ heta}_l)^ op f_{\phi}(oldsymbol{ heta}_{l'})|] \Big)$

• $\{\theta\}_{i=1}^L \sim \mathcal{U}(\mathbb{S}^{d-1})$; L is called the number of projections

After finding the optimal ϕ^* , we can approximate the value of DSW by:

 $DSW_p(\mu,\nu;C) \approx \left(\sum_{l=1}^{L} [W_p^p(\mathcal{R}I_{\mu}(\cdot, f_{\phi^*}(\theta_l)), \mathcal{R}I_{\nu}(\cdot, f_{\phi^*}(\theta_l))])^{1/p}\right)$

L is called the number of projections

Approximate the distribution over directions by 1000 samples

- When $\lambda_C = 0$, all samples are the "max" direction
- When λ_C is large enough, "best" orthogonal directions are found

Generative model with minimum expected distance estimator:

$$\hat{ heta}_{n,m} = rg\min_{ heta \in \Theta} \mathbb{E} \left[ext{DSW}_p \left(\hat{\mu}_n, \hat{\mu}_{ heta,m}
ight) \mid X_{1:n}
ight]$$

• In practice, we set m = n = size of mini-batches

The neural net architecture is chosen based on the dataset

Max-SW

Max-GSW-NN

SW L=10000

DSW L=10000

Introducing a new distance between probability measures - distributional sliced Wasserstein

• Theoretical analysis (metricity, connections to existing sliced optimal transport distances, curse of dimensionality)

Extensions with non-linear projecting

• Experimental results on generative modeling task to show the favorable performance of the new distance

Email: v.khainb@vinai.io