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Molecule Optimization
 Design new molecules with desired properties:
 Property scoring function    (potent, non-toxic, easy to synthesize, …)
 Challenges: searching over the vast space of > 1060 molecules.

 Task: Learn a molecule generative model to maximize
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Score:

Property Scoring



RL for Generative Design
 Generation policy    : decide a new atom (and bonds) to add to the current partial molecule.

 Use RL to optimize   :
 Reward                 only obtained at the end.
 Sparse reward, long horizon ⟶ hard to optimize.
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Autoregressive generative process



Conditioning on Substructures 
 Rationales – substructures that most contributes to the desired molecular properties.
 Conditioning generation policy     on rationales.

 Use RL to optimize   :
 Shorter horizon ⟶ easier to optimize.
 Obtaining rationales is hard
 Designed manually: require human effort.
 MCTS (Jin et al., 2020): unable to optimize rationales jointly with   .
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Conditioning autoregressive generative process

…



Our Approach: MolEvol
 Hierarchical Generative Model

 Alternating Optimization (EM-style)
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Rationale 
Distribution

• E-step
• Fix             , update        .

• M-step
• Fix        , update            .



MolEvol: Algorithm Overview
 Init
 A set of seed molecules are given.
 Parameter     .

 E-step
 Produce a set of rationales with 

explainable graph model.
 Optimize (closed form).

 M-step
 Produce a set of seed molecules.
 Optimize (RL).
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M-step

E-step

…

…



MolEvol: E-step
 We use weighted particles to 

represent         .

 Particles are obtained from an 
explainable graph model.
 Extract key subgraphs (rationales) 𝑠𝑠

from seed molecules               .
 𝑠𝑠 explains 𝑓𝑓(𝑔𝑔).

 Weights can be computed using        .
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E-step

…



MolEvol: Explainable Graph Model
 To explain                               , we maximize the mutual information between 𝑌𝑌 and rationale 𝑠𝑠.
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MolEvol: M-step
 We update      from         using RL,
 Init state                ,
 Reward                .
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M-step
…



Property Score Distributions
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Distribution of 𝑓𝑓(𝑔𝑔) from each iteration. Distribution of the property scores.



Comparing to Baselines
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RL baselines EA baselinesAblation studies



Thanks for listening!
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Paper Full Slides

For more details, please refer to our paper/full slides/poster/repo: 

Poster GitHub

https://openreview.net/pdf?id=jHefDGsorp5
http://binghongchen.net/pdf/ICLR21-molopt-slide.pdf
http://binghongchen.net/pdf/ICLR21-molopt-poster.pdf
https://github.com/binghong-ml/MolEvol
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