

Molecule Optimization by Explainable Evolution

Binghong Chen^{1*}, Tianzhe Wang^{1,5*}, Chengtao Li², Hanjun Dai³, Le Song⁴

¹Georgia Institute of Technology, ²Galixir, ³Google Research, Brain Team, ⁴Mohamed bin Zayed University of AI, ⁵Shanghai Qi Zhi Institute

Molecule Optimization

- Design new molecules with desired properties:
 - Property scoring function f (potent, non-toxic, easy to synthesize, ...)
 - Challenges: searching over the vast space of $> 10^{60}$ molecules.

• Task: Learn a molecule generative model $p(\cdot)$ to maximize $\max_{p(\cdot)} \mathbb{E}_{g \sim p(\cdot)}[f(g)]$

RL for Generative Design

Generation policy p: decide a new atom (and bonds) to add to the current partial molecule.

- Use RL to optimize *p*:
 - Reward r = f(g) only obtained at the end.
 - Sparse reward, long horizon \rightarrow hard to optimize.

Conditioning on Substructures

- Rationales substructures that most contributes to the desired molecular properties.
- Conditioning generation policy p on rationales.

Conditioning autoregressive generative process

- Use RL to optimize *p*:
 - Shorter horizon \rightarrow easier to optimize.
 - Obtaining rationales is hard
 - Designed manually: require human effort.
 - MCTS (Jin et al., 2020): unable to optimize rationales jointly with *p*.

Our Approach: MolEvol

Hierarchical Generative Model

Alternating Optimization (EM-style)

 $J(\theta, p(s)) = \mathbb{E}_{g \sim p_{\theta}(\cdot)}[f(g)] + \lambda \cdot \mathbb{H}[p(s)]$

- E-step
 - Fix $p_{\theta}(g|s)$, update p(s).
- M-step
 - Fix p(s), update $p_{\theta}(g|s)$.

MolEvol: Algorithm Overview

- Init
 - A set of seed molecules are given.
 - Parameter θ^0 .

E-step

- Produce a set of rationales with explainable graph model.
- Optimize p(s) (closed form).
- M-step
 - Produce a set of seed molecules.
 - Optimize $p_{\theta}(g|s)$ (RL).

MolEvol: E-step

- We use weighted particles to represent p^t(s).
- Particles are obtained from an <u>explainable graph model</u>.
 - Extract key subgraphs (rationales) s from seed molecules $g \in \mathcal{G}^{t-1}$.
 - s explains f(g).
- Weights can be computed using θ^{t-1} .

MolEvol: Explainable Graph Model

• To explain $\mathbb{P}(Y = 1|g) \triangleq f(g)$, we maximize the mutual information between Y and rationale s.

MolEvol: M-step

- We update θ^t from θ^{t-1} using RL,
 - Init state $s \sim p^t(s)$,
 - Reward r = f(g).

Property Score Distributions

Distribution of f(g) from each iteration.

Distribution of the property scores.

Comparing to Baselines

Algorithm	MolEvol	[MCTS]	[FixM]	[FixR]	RationaleRL	REINVENT	MSO	GA-D(t)
Success rate	93.0%	77.7%	67.3%	66.3%	61.1%	46.6%	57.7%	62.0%
Novelty	75.7%	72.5%	67.4%	54.6%	57.4%	66.4%	28.6%	19.4%
Diversity	0.681	0.707	0.723	0.727	0.749	0.666	-	-
		Ablation studies			RL baselines		EA baselines	

Thanks for listening!

For more details, please refer to our paper/full slides/poster/repo:

Paper

Poster

