

Complex Query Answering with Neural Link Predictors

Erik Arakelyan* Daniel Daza* Pasquale Minervini* Michael Cochez

UNIVERSITY OF AMSTERDAM

ICLR 2021

$$P(\text{Apixaban} \xrightarrow{\text{interacts}} \text{Paroxetine}) \propto$$

Query: Which medications have side-effects when taken with drugs for treating Anxiety?

Query: Which medications have side-effects when taken with drugs for treating Anxiety?

?M

Query: Which medications have side-effects when taken with drugs for treating Anxiety?

 $?M:\exists D$

Complex Queries on Incomplete Graphs

Query: Which medications have side-effects when taken with drugs for treating Anxiety?

 $?M: \exists D.$ interacts (M, D)

Complex Queries on Incomplete Graphs

Query: Which medications have side-effects when taken with drugs for treating Anxiety?

 $?M: \exists D$. interacts $(M, D) \land$ treats (D, anxiety)

Query: Which medications have side-effects when taken with drugs for treating Anxiety?

 $?M: \exists D$. interacts $(M, D) \land$ treats (D, anxiety)

BetaE — Ren et al. [ICLR 2020]

Q2B — Ren et al. [NeurIPS 2020]

GQE — Hamilton et al. [NeurIPS 2018]

Process

Query: Which medications have side-effects when taken with drugs for treating Anxiety?

 $?M: \exists D$. interacts $(M, D) \land$ treats (D, anxiety)

BetaE — Ren et al. [ICLR 2020]

Q2B — Ren et al. [NeurIPS 2020]

GQE — Hamilton et al. [NeurIPS 2018]

Process

1. Generate *millions* of complex query-answer pairs

Complex Queries on Incomplete Graphs

Query: Which medications have side-effects when taken with drugs for treating Anxiety?

 $?M: \exists D$. interacts $(M, D) \land$ treats (D, anxiety)

BetaE — Ren et al. [ICLR 2020]

Q2B — Ren et al. [NeurIPS 2020]

GQE — Hamilton et al. [NeurIPS 2018]

Process

- 1. Generate *millions* of complex query-answer pairs
- 2. Train a deep neural model to answer complex queries

Query: Which medications have side-effects when taken with drugs for treating Anxiety?

 $?M: \exists D$. interacts $(M, D) \land$ treats (D, anxiety)

BetaE — Ren et al. [ICLR 2020]

Q2B — Ren et al. [NeurIPS 2020]

GQE — Hamilton et al. [NeurIPS 2018]

Complex Queries on Incomplete Graphs

Query: Which medications have side-effects when taken with drugs for treating Anxiety?

 $?M: \exists D$. interacts $(M, D) \land$ treats (D, anxiety)

Complex Queries on Incomplete Graphs

Query: Which medications have side-effects when taken with drugs for treating Anxiety?

 $?M: \exists D$. interacts $(M, D) \land$ treats (D, anxiety)

Query: Which medications have side-effects when taken with drugs for treating Anxiety?

 $?M: \exists D$. interacts $(M, D) \land$ treats (D, anxiety)

BetaE — Ren et al. [ICLR 2020]

Problems

Query: Which medications have side-effects when taken with drugs for treating Anxiety?

 $?M: \exists D$. interacts $(M, D) \land$ treats (D, anxiety)

BetaE — Ren et al. [ICLR 2020]

Problems

 Need to train the model on *millions* of generated queries not clear what happens when evaluating on queries outside of training distribution

Query: Which medications have side-effects when taken with drugs for treating Anxiety?

 $?M: \exists D$. interacts $(M, D) \land$ treats (D, anxiety)

BetaE — Ren et al. [ICLR 2020]

Problems

- Need to train the model on *millions* of generated queries not clear what happens when evaluating on queries outside of training distribution
- No explanation on the reasons why a given answer was produced by the model

Proposed solution: train a neural model ϕ for answering atomic (simple) queries (e.g. "which drugs treat Anxiety?"), and cast the query answering task as an *optimisation problem*

 $?M: \exists D$. interacts $(M, D) \land$ treats (D, anxiety)

Proposed solution: train a neural model ϕ for answering atomic (simple) queries (e.g. "which drugs treat Anxiety?"), and cast the query answering task as an *optimisation problem*

 $M: \exists D$. interacts $(M, D) \land$ treats (D, anxiety)

Proposed solution: train a neural model ϕ for answering atomic (simple) queries (e.g. "which drugs treat Anxiety?"), and cast the query answering task as an *optimisation problem*

Proposed solution: train a neural model ϕ for answering atomic (simple) queries (e.g. "which drugs treat Anxiety?"), and cast the query answering task as an *optimisation problem*

 $\arg \max_{\substack{M,D \in \mathscr{C}}} \left| \phi_{\text{interacts}} \left(\mathbf{e}_{M}, \mathbf{e}_{D} \right) \top \phi_{\text{treats}} \left(\mathbf{e}_{D}, \mathbf{e}_{\text{anxiety}} \right) \right|$

 $\arg \max_{\substack{M,D \in \mathscr{C}}} \left| \phi_{\text{interacts}} \left(\mathbf{e}_{M}, \mathbf{e}_{D} \right) \top \phi_{\text{treats}} \left(\mathbf{e}_{D}, \mathbf{e}_{\text{anxiety}} \right) \right|$

$$\arg \max_{\substack{M,D \in \mathscr{C}}} \left[\phi_{\text{interacts}} \left(\mathbf{e}_{M}, \mathbf{e}_{D} \right) \top \phi_{\text{treats}} \left(\mathbf{e}_{D}, \mathbf{e}_{\text{anxiety}} \right) \right]$$

Greedy Search

• Identify the k most likely values for D

$$\arg \max_{\substack{M,D \in \mathscr{C}}} \left[\phi_{\text{interacts}} \left(\mathbf{e}_{M}, \mathbf{e}_{D} \right) \top \phi_{\text{treats}} \left(\mathbf{e}_{D}, \mathbf{e}_{\text{anxiety}} \right) \right]$$

- Identify the k most likely values for D
- For each value of *D*:

$$\arg \max_{\substack{M,D \in \mathscr{C}}} \left[\phi_{\text{interacts}} \left(\mathbf{e}_{M}, \mathbf{e}_{D} \right) \top \phi_{\text{treats}} \left(\mathbf{e}_{D}, \mathbf{e}_{\text{anxiety}} \right) \right]$$

- Identify the k most likely values for D
- For each value of *D*:
 - Identify the k most likely values for M

$$\underset{M,D\in\mathscr{C}}{\operatorname{max}} \phi_{\operatorname{interacts}}\left(\mathbf{e}_{M},\mathbf{e}_{D}\right) \top \phi_{\operatorname{treats}}\left(\mathbf{e}_{D},\mathbf{e}_{\operatorname{anxiety}}\right)$$

- Identify the k most likely values for D
- For each value of *D*:
 - Identify the k most likely values for M
- Compute the query score for all (M, D) combinations

$$\underset{M,D\in\mathscr{C}}{\operatorname{max}} \phi_{\operatorname{interacts}}\left(\mathbf{e}_{M},\mathbf{e}_{D}\right) \top \phi_{\operatorname{treats}}\left(\mathbf{e}_{D},\mathbf{e}_{\operatorname{anxiety}}\right)$$

- Identify the k most likely values for D
- For each value of *D*:
 - Identify the $k \mod k$ most likely values for M
- Compute the query score for all (M, D) combinations
- Return the most likely value for (M, D)

 $\arg \max_{\mathbf{e}_{M},\mathbf{e}_{D} \in \mathbb{R}^{k}} \left| \phi_{\text{interacts}} \left(\mathbf{e}_{M},\mathbf{e}_{D} \right) \top \phi_{\text{treats}} \left(\mathbf{e}_{D},\mathbf{e}_{\text{anxiety}} \right) \right|$

$$\arg \max_{\mathbf{e}_{M},\mathbf{e}_{D} \in \mathbb{R}^{k}} \left[\phi_{\text{interacts}} \left(\mathbf{e}_{M},\mathbf{e}_{D} \right) \top \phi_{\text{treats}} \left(\mathbf{e}_{D},\mathbf{e}_{\text{anxiety}} \right) \right]$$

Gradient-Based Search

$$\arg \max_{\mathbf{e}_{M},\mathbf{e}_{D} \in \mathbb{R}^{k}} \left[\phi_{\text{interacts}} \left(\mathbf{e}_{M},\mathbf{e}_{D} \right) \top \phi_{\text{treats}} \left(\mathbf{e}_{D},\mathbf{e}_{\text{anxiety}} \right) \right]$$

Gradient-Based Search

• Initialise \mathbf{e}_M and \mathbf{e}_D randomly

$$\arg \max_{\mathbf{e}_{M},\mathbf{e}_{D} \in \mathbb{R}^{k}} \left[\phi_{\text{interacts}} \left(\mathbf{e}_{M},\mathbf{e}_{D} \right) \top \phi_{\text{treats}} \left(\mathbf{e}_{D},\mathbf{e}_{\text{anxiety}} \right) \right]$$

Gradient-Based Search

- Initialise \mathbf{e}_M and \mathbf{e}_D randomly
- Optimise \mathbf{e}_M and \mathbf{e}_D via Gradient Ascent to maximise the score of the query

$$\arg \max_{\mathbf{e}_{M},\mathbf{e}_{D} \in \mathbb{R}^{k}} \left[\phi_{\text{interacts}} \left(\mathbf{e}_{M},\mathbf{e}_{D} \right) \top \phi_{\text{treats}} \left(\mathbf{e}_{D},\mathbf{e}_{\text{anxiety}} \right) \right]$$

Gradient-Based Search

- Initialise \mathbf{e}_M and \mathbf{e}_D randomly
- Optimise \mathbf{e}_M and \mathbf{e}_D via Gradient Ascent to maximise the score of the query
- Replace \mathbf{e}_M with the representations of all entities, and rank them based on the resulting query score

Explainability

Query: Which medications have side-effects when taken with drugs for treating Anxiety?

 $?M: \exists D$. interacts $(M, D) \land$ treats (D, anxiety)

Explainability

Query: Which medications have side-effects when taken with drugs for treating Anxiety?

 $?M: \exists D$. interacts $(M, D) \land$ treats (D, anxiety)

M	D • Explainable
Apixaban	Paroxetine
Amitriptyline	Paroxetine
Phenytoin	Paroxetine
Duloxetine	Pregabalin
Buprenorphine	Pregabalin

Explainability

Query: What international organisations contain the country of nationality of Thomas Aquinas?

 $?O: \exists C$. nationality (T. Aquinas, C) \land member (C, O)

0	С
NATO	United States
OECD	United States
EU	United States
NATO	United Kingdom
OECD	United Kingdom
EU	United Kingdom
OECD	Germany
EU	Germany
WTO	Germany

Novel approach to answering Complex Queries on large-scale incomplete Knowledge Graphs:

Novel approach to answering Complex Queries on large-scale incomplete Knowledge Graphs:

• Train a neural link predictor on atomic queries

Novel approach to answering Complex Queries on large-scale incomplete Knowledge Graphs:

- Train a neural link predictor on atomic queries
- Answer complex queries by formulating the task as an optimisation problem

Novel approach to answering Complex Queries on large-scale incomplete Knowledge Graphs:

- Train a neural link predictor on atomic queries
- Answer complex queries by formulating the task as an optimisation problem
 Generalises extremely well to complex queries, despite not being trained on them

Novel approach to answering Complex Queries on large-scale incomplete Knowledge Graphs:

- Train a neural link predictor on atomic queries
- Answer complex queries by formulating the task as an optimisation problem
 Generalises extremely well to complex queries, despite not being trained on them

Source code: https://github.com/uclnlp/ctp/